Patents by Inventor Kai Landskron

Kai Landskron has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10646813
    Abstract: The present invention includes apparatuses and methods to separate a gas from a gaseous mixture using supercapacitive swing adsorption.
    Type: Grant
    Filed: September 25, 2017
    Date of Patent: May 12, 2020
    Assignee: Lehigh University
    Inventor: Kai Landskron
  • Patent number: 10189715
    Abstract: Compositions comprising nanoparticles (e.g., nanocrystals) of stishovite silica are described. Such nanoparticles may be made by (1) subjecting a mesoporous silica starting material (e.g., SBA-16 or KIT-6) to a pressure of less than about 20 GPa (e.g., about 12 GPa); (2) heating the mesoporous silica starting material while under pressure to an elevated temperature of less than about 1000° C. (e.g., a temperature of between about 300° C. and about 400° C.); and thereafter isolating the nanoparticles. The nanoparticles may be used in a work tool that is configured and adapted for cutting, drilling, abrading, polishing, machining, or grinding, among other uses.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: January 29, 2019
    Assignee: Lehigh University
    Inventors: Kai Landskron, Paritosh Mohanty, Yingwei Fei
  • Publication number: 20180085703
    Abstract: The present invention includes apparatuses and methods to separate a gas from a gaseous mixture using supercapacitive swing adsorption.
    Type: Application
    Filed: September 25, 2017
    Publication date: March 29, 2018
    Inventor: KAI LANDSKRON
  • Patent number: 9623398
    Abstract: Provided herein are synthetic porous electron-rich covalent organonitridic frameworks (PECONFs). The PECONFs are useful as an adsorbent class of materials. In the PECONFs, inorganic nitridic building units are interconnected via electron-rich aromatic units to form porous covalent frameworks. The frameworks include tunable porous, electron-rich organonitridic frameworks, which are determined based upon synthetic methods as exemplified herein.
    Type: Grant
    Filed: April 11, 2011
    Date of Patent: April 18, 2017
    Assignee: Lehigh University
    Inventors: Kai Landskron, Mohanty Paritosh
  • Publication number: 20160214866
    Abstract: Compositions comprising nanoparticles (e.g., nanocrystals) of stishovite silica are described. Such nanoparticles may be made by (1) subjecting a mesoporous silica starting material (e.g., SBA-16 or KIT-6) to a pressure of less than about 20 GPa (e.g., about 12 GPa); (2) heating the mesoporous silica starting material while under pressure to an elevated temperature of less than about 1000° C. (e.g., a temperature of between about 300° C. and about 400° C.); and thereafter isolating the nanoparticles. The nanoparticles may be used in a work tool that is configured and adapted for cutting, drilling, abrading, polishing, machining, or grinding, among other uses.
    Type: Application
    Filed: March 31, 2016
    Publication date: July 28, 2016
    Inventors: Kai Landskron, Paritosh Mohanty, Yingwei Fei
  • Publication number: 20140166499
    Abstract: Desirable gas separation technologies, including novel methods and systems, are provided herein. The inventive gas separation technologies presented herein utilize supercapacitive swing adsorption (“SSA”) top selectively remove at least one chemical from a gas stream, such as the waste gas exhaust stream of a coal-fired electrical power generation plant. In some embodiments, the supercapacitive apparatus comprises a novel prepared mesoporous material comprising tungsten, preferably as WO3.
    Type: Application
    Filed: April 18, 2012
    Publication date: June 19, 2014
    Applicant: LEHIGH UNIVERSITY
    Inventors: Kai Landskron, David T. Moore, Nina Finamore, Berenika Kokoszka, Paritosh Mohanty
  • Patent number: 8685356
    Abstract: Provided herein are methods of synthesizing large-pore periodic mesoporous quartz. Using the methods herein, large-pore periodic mesoporous quartz has been synthesized at a lower pressure and a temperature than in any previous mesoporous crystalline method, yielding a unique mesoporous article having crystalline pore walls. For example, the methods involve modified nanocasting methods using a mesoporous starting material comprising silica, carbon as a an infiltrating pore filler, followed by application of pressure and heat sufficient to crystallize silica in the infiltrated starting material to form a mesoporous crystalline article having crystalline pore walls therein, and useful in many applications, including as a catalyst.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: April 1, 2014
    Assignee: Lehigh University
    Inventor: Kai Landskron
  • Publication number: 20140087163
    Abstract: Provided herein are synthetic porous electron-rich covalent organonitridic frameworks (PECONFs). The PECONFs are useful as an adsorbent class of materials. In the PECONFs, inorganic nitridic building units are interconnected via electron-rich aromatic units to form porous covalent frameworks. The frameworks include tunable porous, electron-rich organonitridic frameworks, which are determined based upon synthetic methods as exemplified herein.
    Type: Application
    Filed: April 11, 2011
    Publication date: March 27, 2014
    Applicant: Lehigh University
    Inventors: Kai Landskron, Paritosh Mohanty
  • Publication number: 20120129688
    Abstract: Provided herein are methods of synthesizing large-pore periodic mesoporous quartz. Using the methods herein, large-pore periodic mesoporous quartz has been synthesized at a lower pressure and a temperature than in any previous mesoporous crystalline method, yielding a unique mesoporous article having crystalline pore walls. For example, the methods involve modified nanocasting methods using a mesoporous starting material comprising silica, carbon as a an infiltrating pore filler, followed by application of pressure and heat sufficient to crystallize silica in the infiltrated starting material to form a mesoporous crystalline article having crystalline pore walls therein, and useful in many applications, including as a catalyst.
    Type: Application
    Filed: November 22, 2011
    Publication date: May 24, 2012
    Applicant: LEHIGH UNIVERSITY
    Inventor: Kai Landskron
  • Patent number: 7824641
    Abstract: Provided herein is a new material, periodic mesoporous phosphorus-nitrogen compound, which may be used in a variety of emerging technologies. Its surface properties render it promising as a component in a variety of applications, including gas separation and purification systems in which waste gases such as SO2, SO3, or CO2 are separated from other gases. It may also be used as an interlayer dielectric in microelectronic chips. Its structure and composition are useful due to an advantageous and favorable combination of thermal stability, elastic modulus, and dielectric properties. The surface properties and the regularity of the pores furthermore provides utility as shape selective base catalysts. Protonated forms of the material are expected to be useful as a solid acid, and in applications such as acid catalysis. Additionally, because of the thermal behavior of the material, it is useful as “hard” template for other porous materials, without the need of an external reagent.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: November 2, 2010
    Assignee: Lehigh University
    Inventors: Kai Landskron, Paritosh Mohanty
  • Publication number: 20100192474
    Abstract: Compositions comprising nanoparticles (e.g., nanocrystals) of stishovite silica are described. Such nanoparticles may be made by (1) subjecting a mesoporous silica starting material (e.g., SBA-16 or KIT-6) to a pressure of less than about 20 GPa (e.g., about 12 GPa); (2) heating the mesoporous silica starting material while under pressure to an elevated temperature of less than about 1000° C. (e.g., a temperature of between about 300° C. and about 400° C.); and thereafter isolating the nanoparticles. The nanoparticles may be used in a work tool that is configured and adapted for cutting, drilling, abrading, polishing, machining, or grinding, among other uses.
    Type: Application
    Filed: February 1, 2010
    Publication date: August 5, 2010
    Applicant: Lehigh University
    Inventors: Kai Landskron, Paritosh Mohanty, Yingwei Fei
  • Publication number: 20080292521
    Abstract: Provided herein is a new material, periodic mesoporous phosphorus-nitrogen compound, which may be used in a variety of emerging technologies. Its surface properties render it promising as a component in a variety of applications, including gas separation and purification systems in which waste gases such as SO2, SO3, or CO2 are separated from other gases. It may also be used as an interlayer dielectric in microelectronic chips. Its structure and composition are useful due to an advantageous and favorable combination of thermal stability, elastic modulus, and dielectric properties. The surface properties and the regularity of the pores furthermore provides utility as shape selective base catalysts. Protonated forms of the material are expected to be useful as a solid acid, and in applications such as acid catalysis. Additionally, because of the thermal behavior of the material, it is useful as “hard” template for other porous materials, without the need of an external reagent.
    Type: Application
    Filed: May 23, 2008
    Publication date: November 27, 2008
    Applicant: LEHIGH UNIVERSITY
    Inventors: Kai LANDSKRON, Paritosh MOHANTY
  • Publication number: 20070173401
    Abstract: The present invention provides a new class of organic/inorganic hybrid materials having [ER]n rings interconnected by E? atoms. In an embodiment a class of materials called high organic group content periodic mesoporous organosilicas (HO-PMO's) with [SiR]3 rings interconnected by O atoms is described. The measured dielectric, mechanical and thermal properties of the materials suggest that an increased organic content achieved by the [SiR]3 rings of a high organic group content periodic mesoporous organosilica leads to superior materials properties potentially useful for a wide range of applications including microelectronics, separation, catalysis, sensing, optics or electronic printing.
    Type: Application
    Filed: September 22, 2005
    Publication date: July 26, 2007
    Inventors: Kai Landskron, Benjamin Hatton, Geoffrey Alan Ozin, Doug Dragan Perovic