Patents by Inventor KAI TOBIAS BLOCK

KAI TOBIAS BLOCK has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230333185
    Abstract: Exemplary systems, methods and computer-accessible medium according to exemplary embodiments of the present disclosure can separate fat and water in magnetic resonance imaging using frequency sweep radiofrequency saturation pulses. In an exemplary procedure, periodic RF saturation pulses with varying frequency offset from a water resonance frequency with at least two different offsets are emanated. In another exemplary procedure, the signal response to saturation at different frequencies on a voxel-by-voxel basis can be analyzed.
    Type: Application
    Filed: April 18, 2023
    Publication date: October 19, 2023
    Inventors: KAI TOBIAS BLOCK, Ruoxun Zi, Hersh Chandarana
  • Patent number: 10281544
    Abstract: A method and a device are provided that improve quantification of the spin-spin relaxation (“T2”) time of an image in nuclear magnetic resonance (“NMR”) applications using fast multi spin-echo sequences. The method employs time-efficient computer simulations for exact modeling of spurious stimulated echoes in multi-dimensional magnetic resonance imaging (“MRI”) runs. The method employs Bloch simulations and can use a plurality of parameters to produce echo modulation curves prior to correcting distorted experimental data based on pre-calculated simulation values.
    Type: Grant
    Filed: August 19, 2015
    Date of Patent: May 7, 2019
    Assignee: NEW YORK UNIVERSITY
    Inventors: Noam Ben-Eliezer, Kai Tobias Block
  • Patent number: 9297871
    Abstract: The invention concerns a method to generate an MR image of an examination subject of MR signals of the examination subject being detected with a receiver coil element of a magnetic resonance system. A spatially related sensitivity is determined for the receiver coil element. A mask is generated for the receiver coil element depending on the sensitivity of the receiver coil element in order to therewith mask a region of the MR image, in which region the receiver coil element has at least one predetermined sensitivity. At least one RF excitation pulse and at least one magnetic field gradient are activated to acquire MR data with the receiver coil element, and a preliminary MR image is generated depending on MR data acquired therewith. The mask of the receiver coil element is applied to the preliminary MR image in order to generate an MR image of the receiver coil element, and an MR image of the examination subject is generated from the MR image for the receiver coil element.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: March 29, 2016
    Assignee: Siemens Aktiengesellschaft
    Inventors: Kai Tobias Block, Matthias Fenchel
  • Patent number: 9297873
    Abstract: In a method to select an undersampling scheme of k-space and an associated set of reconstruction kernels to acquire reduced magnetic resonance (MR) data sets with multiple coils, a calibration data set is acquired for each of the respective coils, a noise covariance is determined from autocorrelations and correlations of the noise of the various coils. At least one set of reconstruction kernels is calculated for each of the multiple undersampling schemes from the calibration data sets of the various coils. For each set of reconstruction kernels, a characteristic value is calculated from the noise covariance and the respective reconstruction kernels of the coils, with the characteristic value being proportional to a spatial mean value of a signal noise of an MR image. A selected undersampling scheme and a selected set of reconstruction kernels are selected based on the calculated characteristic values.
    Type: Grant
    Filed: September 26, 2012
    Date of Patent: March 29, 2016
    Assignee: Siemens Aktiengesellschaft
    Inventors: Kai Tobias Block, Stephan Kannengiesser, Marcel Dominik Nickel
  • Publication number: 20150355298
    Abstract: A method and a device are provided that improve quantification of the spin-spin relaxation (“T2”) time of an image in nuclear magnetic resonance (“NMR”) applications using fast multi spin-echo sequences. The method employs time-efficient computer simulations for exact modeling of spurious stimulated echoes in multi-dimensional magnetic resonance imaging (“MRI”) runs. The method employs Bloch simulations and can use a plurality of parameters to produce echo modulation curves prior to correcting distorted experimental data based on pre-calculated simulation values.
    Type: Application
    Filed: August 19, 2015
    Publication date: December 10, 2015
    Applicant: NEW YORK UNIVERSITY
    Inventors: Noam Ben-Eliezer, Kai Tobias Block
  • Publication number: 20150320334
    Abstract: An exemplary system, method and computer-accessible medium can be provided for alerting a patient of a condition(s) during an MRI scan procedure(s), which can include, for example receiving information related to the condition(s), and controlling an intensity of a light source(s) located near or on an MRI scanner based on the condition(s). The light source(s) can include a light-emitting diode, which can be a white LED and/or a rainbow LED. The color of the rainbow LED can be changed based on the condition(s). The light source(s) can be located inside or outside a bore of the MRI scanner.
    Type: Application
    Filed: May 5, 2015
    Publication date: November 12, 2015
    Inventor: Kai Tobias Block
  • Publication number: 20150226815
    Abstract: In a method for automatically detecting contrast enhancement at predetermined phases as a contrast agent bolus perfuses a target tissue volume in a patient, a continuous acquisition MRI imaging system is provided for obtaining dynamic contrast enhanced MRI data for use in creating images. The contrast agent bolus is injected into a blood stream of the patient which passes through the target volume. With the imaging system, a center of a k-space of the target volume is repeatedly sampled to obtain k-space data. A bolus time curve signal is automatically extracted from the k-space data which indicates a course of bolus contrast enhancement which is used to automatically pick time frames at the predetermined phases of the perfusion which are then used to identify corresponding key images to be obtained at the time frames.
    Type: Application
    Filed: February 12, 2014
    Publication date: August 13, 2015
    Inventors: Kai Tobias Block, Robert Grimm, Marcel Dominik Nickel
  • Patent number: 8879852
    Abstract: A reconstructed image is rendered of a patient by a processor from a set of undersampled MRI data by first subtracting two repetitions of the acquired data in k-space to create a third dataset. The processor reconstructs the image by minimizing an objective function under a constraint related to the third dataset, wherein the objective function includes applying a Karhunen-Loeve Transform (KLT) to a temporal dimension of data. The objective function under the constraint is expressed as arg minf{??(f)?1 subject to ?Af?y?2??}. The reconstructed image is an angiogram which may be a 4D angiogram. The angiogram is used to diagnose a vascular disease.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: November 4, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventors: Ti-chiun Chang, Mariappan S. Nadar, Jens Gühring, Michael Zenge, Kai Tobias Block, Peter Schmitt, Edgar Mueller
  • Patent number: 8675942
    Abstract: A reconstructed image is rendered from a set of MRI data by first estimating an image with an area which does not contain artifacts or has an artifact with a relative small magnitude. Corresponding data elements in the estimated image and a trial image are processed, for instance by multiplication, to generate an intermediate data set. The intermediate data set is transformed and minimized iteratively to generate a reconstructed image that is free or substantially free of artifacts. In one embodiment a Karhunen-Loeve Transform (KLT) is used. A sparsifying transformation may be applied to generate the reconstructed image. The sparsifying transformation may be also not be applied.
    Type: Grant
    Filed: October 25, 2011
    Date of Patent: March 18, 2014
    Assignees: Siemens Aktiengesellschaft, National Institutes of Health
    Inventors: Ti-chiun Chang, Mariappan S. Nadar, Jens Gühring, Michael Zenge, Kai Tobias Block, Peter Speier, Edgar Müller, Michael S. Hansen
  • Patent number: 8493067
    Abstract: In a magnetic resonance apparatus and method to generate an image data set by means of a radial scanning of a raw data set, at least one calibration measurement is implemented for at least one predetermined spoke of the radial scan, and a gradient moment difference between an assumed gradient moment and an actually applied gradient moment is determined along the at least one predetermined spoke. Readout of all spokes of the predetermined raw data set ensues by activating multiple magnetic field gradients in spatial directions in order to respectively read out scan points of a respective spoke. The position of each scan point of each spoke is corrected depending on the gradient moment difference, by the position of the respective scan point that is assumed based on the respective activated magnetic field gradients being shifted by the gradient moment difference.
    Type: Grant
    Filed: March 24, 2011
    Date of Patent: July 23, 2013
    Assignee: Siemens Aktiengesellschaft
    Inventor: Kai Tobias Block
  • Publication number: 20130154640
    Abstract: The invention concerns a method to generate an MR image of an examination subject of MR signals of the examination subject being detected with a receiver coil element of a magnetic resonance system. A spatially related sensitivity is determined for the receiver coil element. A mask is generated for the receiver coil element depending on the sensitivity of the receiver coil element in order to therewith mask a region of the MR image, in which region the receiver coil element has at least one predetermined sensitivity. At least one RF excitation pulse and at least one magnetic field gradient are activated to acquire MR data with the receiver coil element, and a preliminary MR image is generated depending on MR data acquired therewith. The mask of the receiver coil element is applied to the preliminary MR image in order to generate an MR image of the receiver coil element, and an MR image of the examination subject is generated from the MR image for the receiver coil element.
    Type: Application
    Filed: December 14, 2012
    Publication date: June 20, 2013
    Inventors: Kai Tobias Block, Matthias Fenchel
  • Publication number: 20130121550
    Abstract: A reconstructed image is rendered of a patient by a processor from a set of undersampled MRI data by first subtracting two repetitions of the acquired data in k-space to create a third dataset. The processor reconstructs the image by minimizing an objective function under a constraint related to the third dataset, wherein the objective function includes applying a Karhunen-Loeve Transform (KLT) to a temporal dimension of data. The objective function under the constraint is expressed as arg minf{??(f)?1 subject to ?Af?y?2??}. The reconstructed image is an angiogram which may be a 4D angiogram. The angiogram is used to diagnose a vascular disease.
    Type: Application
    Filed: October 28, 2011
    Publication date: May 16, 2013
    Applicant: Siemens Corporation
    Inventors: Ti-chiun Chang, Mariappan S. Nadar, Jens Gühring, Michael Zenge, Kai Tobias Block, Peter Schmitt, Edgar Mueller
  • Publication number: 20130076352
    Abstract: In a method to select an undersampling scheme of k-space and an associated set of reconstruction kernels to acquire reduced magnetic resonance (MR) data sets with multiple coils, a calibration data set is acquired for each of the respective coils, a noise covariance is determined from autocorrelations and correlations of the noise of the various coils. At least one set of reconstruction kernels is calculated for each of the multiple undersampling schemes from the calibration data sets of the various coils. For each set of reconstruction kernels, a characteristic value is calculated from the noise covariance and the respective reconstruction kernels of the coils, with the characteristic value being proportional to a spatial mean value of a signal noise of an MR image. A selected undersampling scheme and a selected set of reconstruction kernels are selected based on the calculated characteristic values.
    Type: Application
    Filed: September 26, 2012
    Publication date: March 28, 2013
    Inventors: Kai Tobias Block, Stephan Kannengiesser, Marcel Dominik Nickel
  • Publication number: 20120148129
    Abstract: A reconstructed image is rendered from a set of MRI data by first estimating an image with an area which does not contain artifacts or has an artifact with a relative small magnitude. Corresponding data elements in the estimated image and a trial image are processed, for instance by multiplication, to generate an intermediate data set. The intermediate data set is transformed and minimized iteratively to generate a reconstructed image that is free or substantially free of artifacts. In one embodiment a Karhunen-Loeve Transform (KLT) is used. A sparsifying transformation may be applied to generate the reconstructed image. The sparsifying transformation may be also not be applied.
    Type: Application
    Filed: October 25, 2011
    Publication date: June 14, 2012
    Applicant: Siemens Corporation
    Inventors: Ti-chiun Chang, Mariappan S. Nadar, Jens Gühring, Michael Zenge, Kai Tobias Block, Peter Speier, Edgar Mûller, Michael S. Hansen
  • Publication number: 20110234228
    Abstract: In a magnetic resonance apparatus and method to generate an image data set by means of a radial scanning of a raw data set, at least one calibration measurement is implemented for at least one predetermined spoke of the radial scan, and a gradient moment difference between an assumed gradient moment and an actually applied gradient moment is determined along the at least one predetermined spoke. Readout of all spokes of the predetermined raw data set ensues by activating multiple magnetic field gradients in spatial directions in order to respectively read out scan points of a respective spoke. The position of each scan point of each spoke is corrected depending on the gradient moment difference, by the position of the respective scan point that is assumed based on the respective activated magnetic field gradients being shifted by the gradient moment difference.
    Type: Application
    Filed: March 24, 2011
    Publication date: September 29, 2011
    Inventor: KAI TOBIAS BLOCK