Patents by Inventor Kai-Wen Yao

Kai-Wen Yao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8659340
    Abstract: A tunable voltage-controlled pseudo-resistor structure, comprising: a symmetric PMOS transistor circuit and an auto-tuning circuit connected in series. Input of the auto-tuning circuit is connected to a central position Vf of the PMOS transistor circuit having its output Vg, with its purpose of keeping Vg?Vf at a constant value. The PMOS transistor circuit may produce body effect through various different bulk voltages. Through the auto-tuning circuit, Vg and Vf are kept constant to make current of transistor to produce compensation effect, such that regardless of Va>Vb or Va<Vb, a large resistance is maintained. Through utilizing the tunable voltage-controlled pseudo-resistor structure, constant resistance can be maintained under high input voltage, hereby reducing drifting of common-mode voltage, in achieving a superior resistance effect.
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: February 25, 2014
    Assignee: National Central University
    Inventors: Muh-Tian Shiue, Kai-Wen Yao, Cihun-Siyong Gong
  • Publication number: 20130069716
    Abstract: A tunable voltage-controlled pseudo-resistor structure, comprising: a symmetric PMOS transistor circuit and an auto-tuning circuit connected in series. Input of the auto-tuning circuit is connected to a central position Vf of the PMOS transistor circuit having its output Vg, with its purpose of keeping Vg?Vf at a constant value. The PMOS transistor circuit may produce body effect through various different bulk voltages. Through the auto-tuning circuit, Vg and Vf are kept constant to make current of transistor to produce compensation effect, such that regardless of Va>Vb or Va<Vb, a large resistance is maintained. Through utilizing the tunable voltage-controlled pseudo-resistor structure, constant resistance can be maintained under high input voltage, hereby reducing drifting of common-mode voltage, in achieving a superior resistance effect.
    Type: Application
    Filed: March 15, 2012
    Publication date: March 21, 2013
    Inventors: Muh-Tian SHIUE, Kai-Wen Yao, Cihun-Siyong Gong
  • Patent number: 8009462
    Abstract: A SRAM architecture includes a read/write control signal, a read/write control transistor block, an equalize transistor block, a 6-T SRAM cell, a sense amplifier block, a column selection transistor block and a write driver. The 6-T SRAM cell can store and write data. The sense amplifier block is used to read out the data stored in the 6-T SRAM cell correctly when the SRAM architecture performs a read operation and makes bit lines BL (bit line) and BLB( bitline) produce a minimum voltage difference. The column selection transistor block is used to select a column that the data is written in and read out. The write driver is used to perform a write operation to the 6-T SRAM cell of the column. The SRAM architecture can effectively increase the read SNM and dramatically reduce the power consumption.
    Type: Grant
    Filed: July 8, 2009
    Date of Patent: August 30, 2011
    Assignee: National Central University
    Inventors: Cihun-Siyong Gong, Ci-Tong Hong, Muh-Tian Shiue, Kai-Wen Yao
  • Patent number: 7911266
    Abstract: A low complexity and low power phase shift keying demodulator structure includes a digitizer, a phase-transition-independent carrier clock extractor, a binary correlater, a delay element, and a sampler. The digitizer digitizes a BPSK signal for an output waveform. The phase-transition-independent carrier clock extractor detects the phase transition on the output of the digitizer and produces a carrier clock signal. The binary correlater has correlated processes to the output signal of the digitizer and carrier clock signal obtained from the phase-transition-independent carrier clock extractor. The sampler samples the signal from the binary correlater according to the signal from the delay element in order to finish the demodulation with only a small capacitance.
    Type: Grant
    Filed: January 19, 2009
    Date of Patent: March 22, 2011
    Assignee: National Central University
    Inventors: Cihun-Siyong Gong, Muh-Tian Shiue, Kai-Wen Yao
  • Publication number: 20110007556
    Abstract: A SRAM architecture comprises a read/write control signal, a read/write control transistor block, an equalize transistor block, a 6-T SRAM cell, a sense amplifier block, a column selection transistor block and a write driver. The 6-T SRAM cell can store and write data. The sense amplifier block is used to read out the data stored in the 6-T SRAM cell correctly when the SRAM architecture performs a read operation and makes bit lines BL (bit line) and BLB( bitline) produce a minimum voltage difference. The column selection transistor block is used to select a column that the data is written in and read out stored in. The write driver is used to perform a write operation to the 6-T SRAM cell of the column. The SRAM architecture can effectively increase the read SNM and dramatically reduce the power consumption.
    Type: Application
    Filed: July 8, 2009
    Publication date: January 13, 2011
    Inventors: Cihun-Siyong Gong, Ci-Tong Hong, Muh-Tian Shiue, Kai-Wen Yao
  • Publication number: 20100182079
    Abstract: A low complexity and low power phase shift keying demodulator structure comprises: a digitizer, a phase-transition-independent carrier clock extractor, a binary correlater, a delay element, and a sampler; wherein the digitizer digitizes a BPSK signal for an output waveform, the phase-transition-independent carrier clock extractor detects the phase transition on the output of the digitizer and produces a carrier clock signal, the binary correlater has correlated processes to the output signal of the digitizer and carrier clock signal obtained from the phase-transition-independent carrier clock extractor, the sampler samples the signal from the binary correlater according to the signal from the delay element in order to finish the demodulation with only small capacitance.
    Type: Application
    Filed: January 19, 2009
    Publication date: July 22, 2010
    Inventors: Muh-Tian Shiue, Cihun-Siyong Gong, Kai-Wen Yao
  • Patent number: 7746117
    Abstract: A complementary energy path adiabatic logic (CEPAL) includes an evaluation network and a power clock network. The evaluation network is a logic circuit composed of P-type MOS transistors and N-type MOS transistors. The power clock network includes a P-type and N-type MOS transistors and additional P-type and N-type MOS transistors, with each of the transistors involved in the power clock network acting as an active diode.
    Type: Grant
    Filed: September 24, 2008
    Date of Patent: June 29, 2010
    Assignee: Chang Gung University
    Inventors: Ci-Tong Hong, Cihun-Siyong Gong, Chun-Hsien Su, Muh-Tian Shiue, Kai-Wen Yao
  • Publication number: 20100073029
    Abstract: A complementary energy path adiabatic logic (CEPAL) includes an evaluation network and a power clock network. The evaluation network is a logic circuit composed of P-type MOS transistors and N-type MOS transistors. The power clock network includes a P-type and N-type MOS transistors and additional P-type and N-type MOS transistors, with each of the transistors involved in the power clock network acting as an active diode.
    Type: Application
    Filed: September 24, 2008
    Publication date: March 25, 2010
    Inventors: Ci-Tong Hong, Cihun-Siyong Gong, Chun-Hsien Su, Muh-Tian Shiue, Kai-Wen Yao