Patents by Inventor Kai-Ying Wang

Kai-Ying Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8421179
    Abstract: A Schottky diode with high antistatic capability has an N? type doped drift layer formed on an N+ type doped layer. The N? type doped drift layer has a surface formed with a protection ring. Inside the protection ring is a P-type doped area. The N? type doped drift layer surface is further formed with an oxide layer and a metal layer. The contact region between the metal layer and the N? type doped drift layer and the P-type doped area forms a Schottky contact. The P-type doped area has a low-concentration lower layer and a high-concentration upper layer, so that the surface ion concentration is high in the P-type doped area. The Schottky diode thus has such advantages of lowered forward voltage drop and high antistatic capability.
    Type: Grant
    Filed: July 20, 2011
    Date of Patent: April 16, 2013
    Assignee: Pynmax Technology Co., Ltd.
    Inventors: Chiun-Yen Tung, Kun-Hsien Chen, Kai-Ying Wang, Wen-Li Tsai
  • Publication number: 20120205771
    Abstract: A Schottky diode with a low forward voltage drop has an N? type doped drift layer formed on an N+ type doped layer. The N? type doped drift layer has a first surface with a protection ring inside which is a P-type doped area. The N? type doped drift layer surface is further formed with an oxide layer and a metal layer. The contact region between the metal layer and the N? type doped drift layer and the P-type doped area forms a Schottky barrier. The height of the Schottky barrier is lower than the surface of the N? type doped drift layer, thereby reducing the thickness of the N? type doped drift layer under the Schottky barrier. This configuration reduces the forward voltage drop of the Schottky barrier.
    Type: Application
    Filed: July 20, 2011
    Publication date: August 16, 2012
    Applicant: PYNMAX TECHNOLOGY CO., LTD.
    Inventors: Chiun-Yen TUNG, Kai-Ying WANG, Chia-Ling LU, Kuo-Hsien WU, Kun-Hsien CHEN
  • Publication number: 20120205770
    Abstract: A Schottky diode with high antistatic capability has an N? type doped drift layer formed on an N+ type doped layer. The N? type doped drift layer has a surface formed with a protection ring. Inside the protection ring is a P-type doped area. The N? type doped drift layer surface is further formed with an oxide layer and a metal layer. The contact region between the metal layer and the N? type doped drift layer and the P-type doped area forms a Schottky contact. The P-type doped area has a low-concentration lower layer and a high-concentration upper layer, so that the surface ion concentration is high in the P-type doped area. The Schottky diode thus has such advantages of lowered forward voltage drop and high antistatic capability.
    Type: Application
    Filed: July 20, 2011
    Publication date: August 16, 2012
    Applicant: PYNMAX TECHNOLOGY CO., LTD.
    Inventors: Chiun-Yen TUNG, Kun-Hsien CHEN, Kai-Ying WANG, Wen-Li TSAI
  • Publication number: 20110163408
    Abstract: A Schottky diode structure with low reverse leakage current and low forward voltage drop has a first conductive material semiconductor substrate combined with a metal layer. An oxide layer is formed around the edge of the combined conductive material semiconductor substrate and the metal layer. A plurality of dot-shaped or line-shaped second conductive material regions are formed on the surface of the first conductive material semiconductor substrate connecting to the metal layer. The second conductive material regions form depletion regions in the first conductive material semiconductor substrate. The depletion regions can reduce the leakage current area of the Schottky diode, thereby reducing the reverse leakage current and the forward voltage drop. When the first conductive material is a P-type semiconductor, the second conductive material is an N-type semiconductor. When the first conductive material is an N-type semiconductor, the second conductive material is a P-type semiconductor.
    Type: Application
    Filed: January 6, 2010
    Publication date: July 7, 2011
    Inventors: Chiun-Yen Tung, Kun-Hsien Chen, Kai-Ying Wang, Hung Ta Weng, Yi-Chen Shen