Patents by Inventor Kaidi Zhang

Kaidi Zhang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240157360
    Abstract: Microfluidic substrate, microfluidic device, and driving method thereof are provided. The microfluidic substrate includes a plurality of detection units arranged in an array. A detection unit of the plurality of detection units at least includes a first switch transistor, a second switch transistor, a drive electrode, and a photosensitive element. The microfluid substrate includes a base; a transistor array layer on a side of the base, first switch transistors and second switch transistors being on the transistor array layer; a photosensitive element array layer on a side of the transistor array layer away from the substrate, photosensitive elements being on the photosensitive element array layer; a first electrode layer on a side of the photosensitive element array layer away from the base; and a second electrode layer on a side of the first electrode layer away from the base.
    Type: Application
    Filed: March 21, 2023
    Publication date: May 16, 2024
    Inventors: Kaidi ZHANG, Baiquan LIN, Wei LI, Yunfei BAI, Linzhi WANG, Yukun HUANG, Kerui XI
  • Publication number: 20240151687
    Abstract: Provided are a solution detection circuit and apparatus, a driving method and a solution detection method. The solution detection circuit includes at least one detection unit, the detection unit includes an ion-sensitive field-effect transistor, a first reset switch subunit, a synchronous buck switch subunit, a storage capacitor and an output switch subunit. A threshold voltage of the ion-sensitive field-effect transistor can be directly read.
    Type: Application
    Filed: January 16, 2024
    Publication date: May 9, 2024
    Applicant: Shanghai Tianma Microelectronics Co., Ltd.
    Inventors: Wei LI, Kaidi ZHANG, Dongli ZHANG, Liying WANG, Baiquan LIN, Juntao PAN
  • Publication number: 20240144891
    Abstract: Provided are a driver board, a display panel, and a display apparatus. The driver board includes a driver circuit. The driver circuit includes N pixel electrodes, N pixel switches, a data switch, and a storage capacitor, N is a positive integer, and N?2. The storage capacitor includes a reference electrode and a counter electrode. A control terminal of the pixel switch receives a gating signal, a first terminal of the pixel switch is connected to the counter electrode, and a second terminal of the pixel switch is connected to the pixel electrode. The driver board further includes data lines, and each data line is connected to the counter electrode via the data switch.
    Type: Application
    Filed: January 9, 2024
    Publication date: May 2, 2024
    Applicant: Shanghai Tianma Micro-Electronics Co., Ltd.
    Inventors: Haotian LU, Linzhi WANG, Baiquan LIN, Zhen LIU, Kerui XI, Kaidi ZHANG, Yifan XING, Xin XU, Huijun JIN
  • Publication number: 20240128283
    Abstract: A detection substrate including a substrate and a plurality of detection units disposed on a side of the substrate, each detection unit including at least an inorganic transistor, an organic transistor, and a photoelectric sensor element, the organic transistor including an organic semiconductor part, in a direction perpendicular to a plane of the substrate, a film layer where the organic semiconductor part is located being located on the side of the film layer where the inorganic transistor is located away from the substrate, the film layer where the organic semiconductor part is located being located on the side of a film layer where the photoelectric sensor element is located away from the substrate, the organic transistor of the detection unit being connected to a sensing electrode, the sensing electrode being located on the side of the film layer where the inorganic transistor is located away from the substrate.
    Type: Application
    Filed: December 28, 2022
    Publication date: April 18, 2024
    Inventors: Haotian LU, Linzhi WANG, Baiquan LIN, Kerui XI, Shun GONG, Yukun HUANG, Fan XU, Kaidi ZHANG
  • Publication number: 20240091766
    Abstract: Provided is a microfluidic device. The microfluidic device includes a first substrate and a second substrate disposed opposite to each other. A cavity is formed between the first substrate and the second substrate and configured to accommodate liquid. The first substrate includes multiple drive electrodes and multiple first electrodes, and the drive electrodes are disposed on a side of the first electrodes facing the second substrate. At least one of the drive electrodes includes at least one opening, and the at least one opening, along a direction perpendicular to a plane where the first substrate is located, penetrates the drive electrode where the at least one opening is located. An orthographic projection of at least one first electrode on the plane where the first substrate is located covers at least an orthographic projection of one opening on the plane where the first substrate is located.
    Type: Application
    Filed: December 20, 2021
    Publication date: March 21, 2024
    Inventors: Kaidi ZHANG, Baiquan LIN, Kerui XI, Wei LI, Yunfei BAI, Ping SU
  • Publication number: 20240071325
    Abstract: Provided a microfluidic pixel driving circuit includes n boost modules, where each boost module includes a capacitor and a write unit, and n is a positive integer greater than or equal to 2; a first terminal of a first capacitor is electrically connected to a fixed potential line, a second terminal of the first capacitor is electrically connected to a pixel electrode, and the first capacitor is used for storing a voltage of the pixel electrode; a first write unit is configured to write a first data signal to the pixel electrode according to an enable level of a first scan signal; a first terminal of a second capacitor is electrically connected to the pixel electrode; and a second write unit is configured to write a second data signal to a second terminal of the second capacitor according to an enable level of a second scan signal.
    Type: Application
    Filed: November 6, 2023
    Publication date: February 29, 2024
    Applicant: Shanghai Tianma Microelectronics Co., Ltd.
    Inventors: Kaidi Zhang, Baiquan Lin, Yunfei Bai, Wei Li, Kerui Xi
  • Patent number: 11839875
    Abstract: A driving circuit, a method for driving the same, and a microfluidic device are provided. The driving circuit includes a constant voltage writing module configured to transmit a constant voltage to an output terminal of the driving circuit, an AC voltage writing module configured to transmit an AC voltage to the output terminal of the driving circuit, a first switch, and a first capacitor. The first switch includes an input terminal electrically connected to a third signal line, an output terminal electrically connected to control terminals of the AC voltage writing module and the constant voltage writing module, and a control terminal electrically connected to a first scan line. The first capacitor is configured to stabilize a potential of the output terminal the first switch.
    Type: Grant
    Filed: May 13, 2022
    Date of Patent: December 12, 2023
    Assignee: Shanghai Tianma Micro-Electronics Co., Ltd.
    Inventors: Kaidi Zhang, Boquan Lin, Yunfei Bai, Wei Li, Shun Gong, Linzhi Wang, Kerui Xi
  • Publication number: 20230268449
    Abstract: A photosensitive transistor includes a substrate and a first semiconductor layer, a first gate, a first electrode, a second electrode and a second semiconductor layer which are located on a side of the substrate. The first semiconductor layer includes a first doped region, a second doped region and a channel region, the second semiconductor layer is in direct contact with the channel region, and an area of the second semiconductor layer is less than an area of the first semiconductor layer. The photosensitive transistor includes a main region and opening regions, and the opening regions are located at a periphery of the main region. The first electrode and the second electrode are in the same layer and insulated from each other and both surround the main region. The second semiconductor layer includes a main body portion located in the main region and auxiliary portions located in the opening regions.
    Type: Application
    Filed: May 2, 2023
    Publication date: August 24, 2023
    Applicant: Shanghai Tianma Microelectronics Co., Ltd.
    Inventors: Linzhi WANG, Kerui XI, Kaidi ZHANG, Shun GONG, Yukun HUANG
  • Publication number: 20230249181
    Abstract: A microfluidic apparatus, a driving method, and a formation method are provided in the present disclosure. The apparatus includes a first substrate and a second substrate. The first substrate and the second substrate are both smooth substrates. An electrode array layer is on a side of the first substrate; and a second electrode layer is on a side of the second substrate. The electrode array layer at least includes a plurality of first electrodes and a plurality of second electrodes. The first substrate includes a first region and a second region; the plurality of first electrodes is in the first region; and the plurality of second electrode is in the second region. A distance between the first substrate and the second substrate in the first region is D1 is greater than a distance between the first substrate and the second substrate in the second region is D2.
    Type: Application
    Filed: April 26, 2022
    Publication date: August 10, 2023
    Inventors: Kaidi ZHANG, Wei LI, Baiquan LIN, Yunfei BAI, Kerui XI, Feng QIN
  • Publication number: 20230211345
    Abstract: A microfluidic chip and a fabrication method of the microfluidic chip are provided. The microfluidic chip includes an array substrate, and a hydrophobic layer disposed on a side of the array substrate. The hydrophobic layer includes at least one through-hole, and a through-hole of the at least one through-hole penetrates through the hydrophobic layer along a direction perpendicular to a plane of the array substrate. The microfluidic chip also includes at least one hydrophilic structure. A hydrophilic structure of the at least one hydrophilic structure is disposed in the through-hole.
    Type: Application
    Filed: March 2, 2022
    Publication date: July 6, 2023
    Inventors: Wei LI, Baiquan LIN, Kaidi ZHANG, Yunfei BAI, Ping SU, Kerui XI, Zhenyu JIA
  • Publication number: 20230213474
    Abstract: A detection device and a detection method are provided. The detection device includes at least one detection unit. The detection unit includes a first transistor, a second transistor, a third transistor and a fourth transistor that are electrically connected to each other, a gate is disposed above a channel of each of the first transistor, the second transistor, and the third transistor, and an ion-sensitive membrane is covered above a channel of the fourth transistor. The detection device also includes a first voltage signal terminal, a second voltage signal terminal, and a third voltage signal terminal. Further, the detection device includes a first power supply terminal, a first potential output terminal, a second potential output terminal, and a second power supply terminal.
    Type: Application
    Filed: February 28, 2022
    Publication date: July 6, 2023
    Inventors: Kaidi ZHANG, Baiquan LIN, Huihui JIANG, Luning YANG, Wei LI, Yunfei BAI, Zhenyu JIA, Kerui XI, Feng QIN
  • Patent number: 11675161
    Abstract: The present disclosure a camera optical lens comprising, from an object side to an image side, a first lens having a positive refractive power, a second lens having a positive refractive power, a third lens having a negative refractive power, a fourth lens having a negative refractive power, and a fifth lens having a positive refractive power, the second lens is bonded to the third lens, the camera optical lens satisfying conditions of 0.35?f1/f?0.75. The camera optical lens can achieve excellent optical characteristics while meeting the designing requirement for having a large aperture and a long focal length, and being ultra-thin.
    Type: Grant
    Filed: June 9, 2020
    Date of Patent: June 13, 2023
    Assignee: AAC Optics Solutions Pte. Ltd.
    Inventor: Kaidi Zhang
  • Publication number: 20230151408
    Abstract: A gene sequencing structure, a gene sequencing device and a gene sequencing method are provided. The gene sequencing structure includes a substrate, a thin-film transistor array layer located on the substrate and including thin-film transistors that include a first electrode, and a second electrode; an ion-sensitive layer located on a side of the semiconductor layer away from the substrate; a micro-hole layer located on a side of the ion-sensitive layer away from the substrate, including a through-hole passing through the micro-hole layer, at least partially overlapping the semiconductor layer, and used for receiving a to-be-tested single-stranded nucleic acid inside; a conductive structure, located on a side of the layer away from the substrate and electrically connected to the first electrode or the second electrode; and a detection chip, located on a side of the conductive structure away from the substrate and electrically connected to the conductive structure.
    Type: Application
    Filed: January 20, 2022
    Publication date: May 18, 2023
    Inventors: Baiquan LIN, Kerui XI, Kaidi ZHANG, Wei LI, Yunfei BAI, Ping SU, Junting OUYANG
  • Publication number: 20230063019
    Abstract: A driving circuit, a driving method and a microfluidic substrate are provided. The driving circuit includes a first switching unit, a second switching unit, a reset unit, a first capacitor, and a second capacitor. In a first stage of a driving process of the driving circuit, the first switching unit is turned on, a first voltage signal is transmitted to a first node, the second switching unit is turned on, a second voltage signal is input to an output terminal of the driving circuit, and the driving circuit outputs an AC signal. In a second stage of the driving process, the first switching unit is turned off, the valid signal output by the second scan signal terminal controls the reset unit to be turned on, a third voltage signal is input to the output terminal of the driving circuit for reset, and the driving circuit outputs a DC signal.
    Type: Application
    Filed: November 16, 2021
    Publication date: March 2, 2023
    Inventors: Kaidi ZHANG, Baiquan LIN, Wei LI, Yunfei BAI, Kerui XI, Feng QIN
  • Publication number: 20220314220
    Abstract: A driving circuit, a method for driving the same, and a microfluidic device are provided. The driving circuit includes a constant voltage writing module configured to transmit a constant voltage to an output terminal of the driving circuit, an AC voltage writing module configured to transmit an AC voltage to the output terminal of the driving circuit, a first switch, and a first capacitor. The first switch includes an input terminal electrically connected to a third signal line, an output terminal electrically connected to control terminals of the AC voltage writing module and the constant voltage writing module, and a control terminal electrically connected to a first scan line. The first capacitor is configured to stabilize a potential of the output terminal the first switch.
    Type: Application
    Filed: May 13, 2022
    Publication date: October 6, 2022
    Applicant: Shanghai Tianma Micro-Electronics Co., Ltd.
    Inventors: Kaidi ZHANG, Boquan LIN, Yunfei BAI, Wei LI, Shun GONG, Linzhi WANG, Kerui XI
  • Publication number: 20210263264
    Abstract: The present disclosure a camera optical lens comprising, from an object side to an image side, a first lens having a positive refractive power, a second lens having a positive refractive power, a third lens having a negative refractive power, a fourth lens having a negative refractive power, and a fifth lens having a positive refractive power, the second lens is bonded to the third lens , the camera optical lens satisfying conditions of 0.35?f1/f?0.75. The camera optical lens can achieve excellent optical characteristics while meeting the designing requirement for having a large aperture and a long focal length, and being ultra-thin.
    Type: Application
    Filed: June 9, 2020
    Publication date: August 26, 2021
    Inventor: Kaidi Zhang