Patents by Inventor KaiLi Jiang
KaiLi Jiang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20230185306Abstract: The present disclosure discloses a method and system for controlling an autonomous mobile robot, and the autonomous mobile robot. The method includes: when cleaning in a current region, recognizing, by the autonomous mobile robot, information of a line object appearing in a cleaning path, where the information at least includes one of pose information of the line object, a length of the line object, and a cross-sectional radius of the line object; and determining a target control strategy matched with the recognized information from preset control strategies, and causing the autonomous mobile robot to execute the target control strategy.Type: ApplicationFiled: April 12, 2021Publication date: June 15, 2023Inventors: Jiaxin JIANG, Junjie SHAN, Kaili XU
-
Patent number: 11673899Abstract: Disclosed are a crystal form of a thieno[2,3-c]pyridazine-4(1H)-one compound, a preparation method therefor and the use thereof in the preparation of a drug as an inhibitor of ACC1 and ACC2.Type: GrantFiled: December 4, 2020Date of Patent: June 13, 2023Assignees: ZHANGZHOU PIEN TZE HUANG PHARMACEUTICAL CO., LTD., MEDSHINE DISCOVERY INC.Inventors: Juan Yu, Zhiliang Chen, Shicong Wang, Tingting Yin, Kaili Jian, Xiaoping Zheng, Zhigan Jiang, Haiying He
-
Publication number: 20230161209Abstract: The present disclosure provides an array substrate and a display panel including the same. The array substrate includes a plurality of pixel units. Each of the pixel units includes a main pixel electrode, a sub-pixel electrode, a first thin film transistor (TFT) electrically connected to the sub-pixel electrode, a second TFT electrically connected to the first TFT, and a third TFT electrically connected to the main pixel electrode. The first TFT includes a first channel and a first semiconductor layer. The first channel includes two or more subchannels. The first semiconductor layer includes two or more semiconductor sublayers. Each of the semiconductor sublayers is disposed in a corresponding subchannel.Type: ApplicationFiled: May 20, 2020Publication date: May 25, 2023Applicant: TCL China Star Optoelectronics Technology Co., Ltd.Inventors: Zhixiong JIANG, Sheng SUN, Yoonsung UM, Woosung SON, Meng CHEN, Wuguang LIU, Jubin LI, Zhiwei TAN, Haiyan QUAN, Kaili QU, Chuwei LIANG, Ziqi LIU, Lintao LIU, Ting LI, Sikun HAO
-
Patent number: 7754182Abstract: A method for forming a carbon nanotube array includes the following steps: providing a smooth substrate (11); depositing a metal catalyst layer (21) on a surface of the substrate; heating the treated substrate to a predetermined temperature in flowing protective gas; and introducing a mixture of carbon source gas and protective gas for 5-30 minutes, thus forming a carbon nanotube array (61) extending from the substrate. When the mixture of carbon source gas and protective gas is introduced, a temperature differential greater than 50° C. between the catalyst and its surrounding environment is created by adjusting a flow rate of the carbon source gas. Further, a partial pressure of the carbon source gas is maintained lower than 20%, by adjusting a ratio of the flow rates of the carbon source gas and the protective gas. The carbon nanotubes formed in the carbon nanotube array are well bundled.Type: GrantFiled: December 31, 2002Date of Patent: July 13, 2010Assignees: Beijing FUNATE Innovation Technology Co., Ltd., Hon Hai Precision Industry Co., Ltd.Inventors: KaiLi Jiang, ShouShan Fan, QunQing Li
-
Patent number: 7321188Abstract: A light filament (206) formed from carbon nanotubes is characterized by high mechanical strength and durability at elevated temperatures, a high surface area to volume ratio, and high emissivity. Additionally, electrical resistance of the light filament does not increase with increasing temperature as much as electrical resistance of conventional metallic light filaments. Accordingly, power consumption of the light filament is low at incandescent operating temperatures.Type: GrantFiled: October 21, 2005Date of Patent: January 22, 2008Assignees: Tsing Hua University, Hon Hai Precision Industry Co., Ltd.Inventors: KaiLi Jiang, ShouShan Fan, QunQing Li
-
Publication number: 20070228920Abstract: A light filament (206) formed from carbon nanotubes is characterized by high mechanical strength and durability at elevated temperatures, a high surface area to volume ratio, and high emissivity. Additionally, electrical resistance of the light filament does not increase with increasing temperature as much as electrical resistance of conventional metallic light filaments. Accordingly, power consumption of the light filament is low at incandescent operating temperatures.Type: ApplicationFiled: October 21, 2005Publication date: October 4, 2007Inventors: KaiLi Jiang, ShouShan Fan, QunQing Li
-
Patent number: 7045108Abstract: A method of fabricating a long carbon nanotube yarn includes the following steps: (1) providing a flat and smooth substrate; (2) depositing a catalyst on the substrate; (3) positioning the substrate with the catalyst in a furnace; (4) heating the furnace to a predetermined temperature; (5) supplying a mixture of carbon containing gas and protecting gas into the furnace; (6) controlling a difference between the local temperature of the catalyst and the furnace temperature to be at least 50° C.; (7) controlling the partial pressure of the carbon containing gas to be less than 0.2; (8) growing a number of carbon nanotubes on the substrate such that a carbon nanotube array is formed on the substrate; and (9) drawing out a bundle of carbon nanotubes from the carbon nanotube array such that a carbon nanotube yarn is formed.Type: GrantFiled: December 31, 2002Date of Patent: May 16, 2006Assignees: Tsinghua University, Hon Hai Precision Ind. Co., Ltd.Inventors: KaiLi Jiang, Shoushan Fan, QunQing Li
-
Publication number: 20050288582Abstract: A micro medical-ultrasonic endoscopic OCT probe comprising: a micro ultrasonic motor stator for connecting a friction layer and a magnetic rotor; an ultrasonic transducer and a prism being adhered to a rotor respectively; an acoustic couplant for immersing the ultrasonic transducer; an OCT imaging system consisting of prism, grim lens and fiber. The present invention can not only observe the pathologic changes on the surface of mucosa through endoscope, but can also obtain the histological tomogram of an organ through OCT scan and ultrasonic scan, thus broadening the diagnosis range and increasing the diagnosis ability of endoscopes. The probe of this invention is driven by a micro motor directly mounted on the front end of the probe, and does not need soft wires. Compared with the existing technology, its lifespan is greatly expanded.Type: ApplicationFiled: June 10, 2005Publication date: December 29, 2005Inventors: Daoyin Yu, Tieying Zhou, Ping Xue, Xiaodong Chen, Kaili Jiang
-
Patent number: 6957993Abstract: A light filament (206) formed from carbon nanotubes is characterized by high mechanical strength and durability at elevated temperatures, a high surface area to volume ratio, and high emissivity. Additionally, electrical resistance of the light filament does not increase with increasing temperature as much as electrical resistance of metallic light filaments. Accordingly, power consumption of the light filament is low at incandescent operating temperatures. A method for making a light filament made of carbon nanotubes includes the steps of: forming an array of carbon nanotubes (20); pulling out carbon nanotube yarn (204) from the carbon nanotube array; and winding the yarn between two leads (30) functioning as electrodes to form the light filament.Type: GrantFiled: December 31, 2002Date of Patent: October 25, 2005Assignees: Tsinghua University, Hon Hai Precision Ind. Co., Ltd.Inventors: KaiLi Jiang, ShouShan Fan, QunQing Li
-
Patent number: 6956698Abstract: The present invention provides fan optical polarized light source device. The polarized light source device includes at least one carbon nanotube bundle (204) and two gold electrodes (206) respectively connected to ends of the bundle. The bundle has a length of approximately 600 microns, and includes a number of carbon nanotubes bundled together and substantially parallel to each other. Each electrode includes at least one gold wire, which is bonded to an inside of an end of the bundle by an ultrasonic wire bonder. When the polarized light source device is connected to an electrical source, a polarized incandescent light beam emits from the bundle of the polarized light source device. A direction of polarization of the light beam is parallel to an axis of the bundle. The present invention further provides a method of fabricating the polarized light source device.Type: GrantFiled: October 9, 2003Date of Patent: October 18, 2005Assignees: Tsinghua University, Hon Hai Precision Ind. Co., Ltd.Inventors: Peng Li, KaiLi Jiang, QunQing Li, ShouShan Fan
-
Publication number: 20040179258Abstract: The present invention provides an optical polarized light source device. The polarized light source device includes at least one carbon nanotube bundle (204) and two gold electrodes (206) respectively connected to ends of the bundle. The bundle has a length of approximately 600 microns and includes a number of carbon nanotubes bundled together and substantially parallel to each other. Each electrode includes at least one gold wire, which is bonded to inside of an end of the bundle by an ultrasonic wire bonder. When the polarized light source device is connected to an electrical source, a polarized incandescent light beam emits from the bundle of the polarized light source device. A direction of polarization of the light beam is parallel to an axis of the bundle. The present invention further provides a method of fabricating the polarized light source device.Type: ApplicationFiled: October 9, 2003Publication date: September 16, 2004Inventors: Peng Li, Kaili Jiang, QunQing Li, ShouShan Fan
-
Publication number: 20040105807Abstract: The present invention provides a method for manufacturing carbon nanotubes. The method includes the following steps: (a) providing a substrate (3); (b) depositing a catalyst material (1) onto the substrate; (c) exposing the catalyst material to a carbon containing gas for a predetermined period of time in a predetermined temperature such that an array of carbon nanotube having a predetermined length grows from the substrate in a direction substantially perpendicular to the substrate; (d) removing the carbon nanotubes from the substrate; and (e) dispersing the carbon nanotubes via ultrasonication in a dispersant, the dispersant being ethanol or 1-2 dichloroethane. The carbon nanotubes of the present invention have a predetermined same length and are aligned parallel to each other.Type: ApplicationFiled: April 8, 2003Publication date: June 3, 2004Inventors: Shoushan Fan, Liang Liu, Kaili Jiang
-
Publication number: 20040053053Abstract: A method for forming a carbon nanotube array includes the following steps: providing a smooth substrate (11); depositing a metal catalyst layer (21) on a surface of the substrate; heating the treated substrate to a predetermined temperature in flowing protective gas; and introducing a mixture of carbon source gas and protective gas for 5-30 minutes, thus forming a carbon nanotube array (61) extending from the substrate. When the mixture of carbon source gas and protective gas is introduced, a temperature differential greater than 50° C. between the catalyst and its surrounding environment is created by adjusting a flow rate of the carbon source gas. Further, a partial pressure of the carbon source gas is maintained lower than 20%, by adjusting a ratio of the flow rates of the carbon source gas and the protective gas. The carbon nanotubes formed in the carbon nanotube array are well bundled.Type: ApplicationFiled: December 31, 2002Publication date: March 18, 2004Inventors: KaiLi Jiang, ShouShan Fan, QunQing Li
-
Publication number: 20040053780Abstract: A method of fabricating a long carbon nanotube yarn includes the following steps: (1) providing a flat and smooth substrate; (2) depositing a catalyst on the substrate; (3) positioning the substrate with the catalyst in a furnace; (4) heating the furnace to a predetermined temperature; (5) supplying a mixture of carbon containing gas and protecting gas into the furnace; (6) controlling a difference between the local temperature of the catalyst and the furnace temperature to be at least 50° C.; (7) controlling the partial pressure of the carbon containing gas to be less than 0.2; (8) growing a number of carbon nanotubes on the substrate such that a carbon nanotube array is formed on the substrate; and (9) drawing out a bundle of carbon nanotubes from the carbon nanotube array such that a carbon nanotube yarn is formed.Type: ApplicationFiled: December 31, 2002Publication date: March 18, 2004Inventors: KaiLi Jiang, Shoushan Fan, QunQing Li
-
Publication number: 20040051432Abstract: A light filament (206) formed from carbon nanotubes is characterized by high mechanical strength and durability at elevated temperatures, a high surface area to volume ratio, and high emissivity. Additionally, electrical resistance of the light filament does not increase with increasing temperature as much as electrical resistance of metallic light filaments. Accordingly, power consumption of the light filament is low at incandescent operating temperatures. A method for making a light filament made of carbon nanotubes includes the steps of: forming an array of carbon nanotubes (20); pulling out carbon nanotube yarn (204) from the carbon nanotube array; and winding the yarn between two leads (30) functioning as electrodes to form the light filament.Type: ApplicationFiled: December 31, 2002Publication date: March 18, 2004Inventors: KaiLi Jiang, ShouShan Fan, QunQing Li