Patents by Inventor Kaimeng Wang
Kaimeng Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20190001490Abstract: A control device repeats learning of: calculating an allowable condition for speed variations during a processing operation based on an allowable condition for processing error; setting an operating speed change rate used to increase or reduce an operating speed of a robot mechanism unit using a calculated allowable condition for speed variations; and, while increasing or reducing the operating speed change rate over a plurality of repetitions within a range not exceeding a maximum value of the operating speed change rate and within a range of an allowable condition for vibrations occurring in a control target, calculates a new correction amount based on an amount of difference between a position of the control target detected based on a sensor and a target position, and a previously-calculated correction amount.Type: ApplicationFiled: June 26, 2018Publication date: January 3, 2019Inventors: Shinichi WASHIZU, Hajime SUZUKI, Kaimeng WANG
-
Publication number: 20180341828Abstract: A shape recognition device that recognizes a shape of an object having an indefinite shape and flexibility, and assembled by a robot, the shape recognition device including: an imaging unit that images the object; an image processing unit that recognizes the shape of the object on the basis of the object imaged by the imaging unit; and a simulation processing unit that simulates the shape of the object on the basis of the image of the object imaged by the imaging unit. The simulation processing unit interpolates a recognition result of the shape of the object by the image processing unit, on the basis of a simulation result of the shape of the object.Type: ApplicationFiled: April 27, 2018Publication date: November 29, 2018Inventors: Kaimeng WANG, Wenjie CHEN, Kouichirou HAYASHI
-
Publication number: 20180326584Abstract: A robot control device that controls a robot that executes operations in the same area as an operator includes: an information acquisition unit that acquires information indicating a control state of the robot, information indicating an attitude of the operator, and information indicating a position of an operating target object in the operations; an estimating unit that estimates an operation in execution on the basis of respective pieces of information acquired by the information acquisition unit; a required time calculating unit that calculates a required time required until the operation in execution ends on the basis of the estimated operation in execution; an operation plan creating unit that creates an operation plan of the robot on the basis of the required time; and a control unit that controls the robot so as to execute operations according to the operation plan.Type: ApplicationFiled: April 27, 2018Publication date: November 15, 2018Inventors: Kaimeng WANG, Hajime SUZUKI, Shuusuke WATANABE
-
Publication number: 20180290302Abstract: A device that can prevent a decrease in an efficiency of a manufacturing line. The device includes a shape acquisition section for acquiring a shape of a workpiece; a motion pattern acquisition section for acquiring basic motion patterns including a reference workpiece shape, a reference working position in the reference workpiece shape, and a type of an operation carried out on the reference working position; a similarity determination section for determining whether a shape of the workpiece is similar to the reference work piece shape; a position determination section for, based on a shape of the workpiece and the reference workpiece shape, determining the working position on the workpiece that corresponds to the reference working position; and an motion-path generation section for, by changing the reference working position to the determined working position, generating a motion path.Type: ApplicationFiled: April 6, 2018Publication date: October 11, 2018Applicant: FANUC CORPORATIONInventors: Kaimeng Wang, Wenjie Chen, Kouichirou Hayashi
-
Publication number: 20180257239Abstract: Provided is a machine system including a machine including a movable part; a control device; a sensor detecting information about the movable part during a predetermined operation of the machine; a transmitting unit wirelessly transmitting the detected information during the predetermined operation; a receiving unit receiving the wirelessly transmitted information; a storage unit storing the received information; a detection unit detecting a loss in the received information; a command unit causing the machine to repeat the predetermined operation, in a case where a loss in the information is detected; a determination unit determining whether or not every lost part of the information detected first is contained in the information detected during the repeated operation; and an complementing unit ending the repeated operation in a case where every lost part is determined to be contained and complementing the information detected first with the information detected during the repeated operation.Type: ApplicationFiled: January 26, 2018Publication date: September 13, 2018Applicant: Fanuc CorporationInventors: Kaimeng WANG, Nobuaki YAMAOKA, Hajime SUZUKI
-
Publication number: 20180257227Abstract: A control device includes a learning control part in which a difference is calculated between a target position and an actual position of a portion detected based on a sensor, and an operation-speed change rate is increased or reduced several times within a maximum value of the operation-speed change rate set for increasing or reducing the operation speed of a robot mechanism unit and within allowance conditions of vibrations occurring at the portion to be controlled; meanwhile, learning is repeated to calculate an updated compensation amount based on the difference and a previous compensation amount previously calculated for suppressing vibrations at each operation-speed change rate, and a convergent compensation amount and a convergent operation-speed change rate are stored after convergence of the compensation amount and the operation-speed change rate.Type: ApplicationFiled: February 21, 2018Publication date: September 13, 2018Inventors: Shinichi WASHIZU, Hajime SUZUKI, Kaimeng WANG
-
Publication number: 20180229364Abstract: A robot system is provide with a robot control device that includes an operation control unit and a learning control unit. The learning control unit performs a learning control in which a vibration correction amount for correcting a vibration generated at a control target portion of a robot is calculated and the vibration correction amount is employed in the operation command at a next time. The learning control unit includes a plurality of learning control parts for calculating the vibration correction amount and a selection unit that selects one of the plurality of learning control parts on the basis of operation information of the robot when the robot is made to be operated by an operation program that is a target of the learning control.Type: ApplicationFiled: February 9, 2018Publication date: August 16, 2018Inventors: Kaimeng WANG, Satoshi INAGAKI, Wenjie CHEN
-
Publication number: 20180207797Abstract: A robot control system includes an operation control unit, a learning control processing unit and a storage unit. Whenever the operation control unit performs a single learning control, the learning control processing unit stores the number of learning controls, which indicates how many learning controls have been performed, and obtained time-series vibration data in correspondence with each other in the storage unit. The learning control processing unit calculates a convergence determination value to determine whether or not a vibration of a certain portion of a robot converges based on the time-series vibration data at each number of learning controls stored in the storage unit, and determines the number of learning controls having a minimum convergence determination value, out of the calculated convergence determination values, as the optimal number of learning controls.Type: ApplicationFiled: January 2, 2018Publication date: July 26, 2018Inventors: Nobuaki YAMAOKA, Hajime SUZUKI, Kaimeng WANG
-
Publication number: 20180164773Abstract: A robot controller having a function that simplifies learning and a robot control method. The robot controller includes: a learning section configured to carry out learning of detecting a deviation between a commanded trajectory representing a position of the robot generated according to the command values and an operation trajectory representing an actual position where the robot has moved, and generate a corrected program by adjusting the commanded trajectory; a saving section configured to save the corrected program; and a relearning section configured to carry out relearning on a relearning location, the relearning location being a part of the operation trajectory designated by an operator.Type: ApplicationFiled: November 17, 2017Publication date: June 14, 2018Inventors: Kaimeng WANG, Shuusuke WATANABE
-
Publication number: 20180117758Abstract: A robot control device includes a learning control unit for calculating a learning correction amount, a position storage unit for storing a position of a leading end of a robot mechanism part during the learning control, and a speed storage unit for storing a speed of the leading end of the robot mechanism part during the learning control. The robot control device determines, while the robot mechanism part is operated by a position command after the learning control, whether or not the position and the speed of the leading end are in an abnormal state based on errors with respect to the position and the speed of the leading end stored during the learning control. The robot control device switches a determination as to whether the learning correction amount is applied in accordance with this determination result.Type: ApplicationFiled: October 25, 2017Publication date: May 3, 2018Inventor: Kaimeng WANG
-
Patent number: 9937620Abstract: A robot control device which controls a robot includes a sensor coordinate system calculation unit which calculates a position and an orientation of a sensor by making the robot perform a predetermined operation. The sensor coordinate system calculation unit comprises an operation parameter optimization unit which is configured to obtain a combination most suitable for calculating the position and orientation of the sensor, from a plurality of combinations of modified values of a predetermined type of operation parameters, by making the robot perform the predetermined operation, successively using each of the combinations.Type: GrantFiled: September 30, 2016Date of Patent: April 10, 2018Assignee: FANUC CORPORATIONInventors: Nobuaki Yamaoka, Wenjie Chen, Kaimeng Wang
-
Patent number: 9903698Abstract: A system which calculates the relative posture or the relative position and posture between a first object and a second object. This invention provides an object posture calculation system including a first object and a second object contactable at three contact points, a driving unit which brings the first object and the second object into contact with each other, a force measuring unit which measures a force acting between the first object and the second object, and an object posture calculation unit which calculates the relative posture or the relative position and posture between the first object and the second object on the basis of the force measured by the force measuring unit when the first object and the second object come into contact with each other at the three contact points.Type: GrantFiled: September 8, 2016Date of Patent: February 27, 2018Assignee: FANUC CORPORATIONInventors: Takahiro Iwatake, Kaimeng Wang, Bunketsu Chin
-
Publication number: 20170205802Abstract: A robot apparatus includes a robot mechanism; a sensor provided in a portion whose position is to be controlled, of the robot mechanism, for detecting a physical quantity to obtain positional information of the portion; and a robot controller having an operation control unit for controlling the operation of the robot mechanism. The robot controller includes a learning control unit for calculating a learning correction value to improve a specific operation of the robot mechanism based on the physical quantity detected, while the operation control unit makes the robot mechanism perform the specific operation, with the sensor; and a learning extension unit for obtaining the relationship between the learning correction value calculated by the learning control unit and information about the learned specific operation, and calculates another learning correction value to improve a new operation by applying the obtained relationship to information about the new operation without sensor.Type: ApplicationFiled: January 12, 2017Publication date: July 20, 2017Inventors: Kaimeng WANG, Wenjie CHEN
-
Publication number: 20170144301Abstract: A robot system includes a detector for detecting the position and posture of a workpiece; a robot for performing a predetermined operation on the workpiece; and a robot control device. The robot control device includes an area divider for dividing an operation area into a plurality of areas; an area determiner for determining in which area the workpiece is present; a learning controller for learning an operation speedup ratio to speed up an operation by varying speed or acceleration on an area-by-area basis in which the workpiece is present; a memory for storing the position of the workpiece and the operation speedup ratio; and a controller that performs the operation on a new workpiece using the learned operation speedup ratio when the operation has been learned in the area having the new workpiece, and makes the learning controller learn the operation speedup ratio when the operation has not been learned.Type: ApplicationFiled: November 23, 2016Publication date: May 25, 2017Inventors: Shinichi WASHIZU, Hajime SUZUKI, Kaimeng WANG
-
Publication number: 20170106535Abstract: A robot control device which controls a robot includes a sensor coordinate system calculation unit which calculates a position and an orientation of a sensor by making the robot perform a predetermined operation. The sensor coordinate system calculation unit comprises an operation parameter optimization unit which is configured to obtain a combination most suitable for calculating the position and orientation of the sensor, from a plurality of combinations of modified. values of a predetermined type of operation. parameters, by making the robot perform the predetermined operation, successively using each of the combinations.Type: ApplicationFiled: September 30, 2016Publication date: April 20, 2017Inventors: Nobuaki YAMAOKA, Wenjie CHEN, Kaimeng WANG
-
Publication number: 20170067728Abstract: A system which calculates the relative posture or the relative position and posture between a first object and a second object. This invention provides an object posture calculation system including a first object and a second object contactable at three contact points, a driving unit which brings the first object and the second object into contact with each other, a force measuring unit which measures a force acting between the first object and the second object, and an object posture calculation unit which calculates the relative posture or the relative position and posture between the first object and the second object on the basis of the force measured by the force measuring unit when the first object and the second object come into contact with each other at the three contact points.Type: ApplicationFiled: September 8, 2016Publication date: March 9, 2017Applicant: FANUC CORPORATIONInventors: Takahiro Iwatake, Kaimeng Wang, Bunketsu Chin
-
Patent number: 9321178Abstract: A machine system including a sensor unit detecting periodically an acceleration at a tip part of a movable member, a data acquisition unit acquiring first time-series data of the acceleration at the tip part of the movable member corresponding to sensor signal received via a wireless signal path, a data calculation unit configured to calculate second time-series data corresponding to the first time-series data based on a driving command of the motor, a delay time calculation unit calculating a delay time of the first time-series data with respect to the second time-series data according to a degree of correlation between first time-series data and the second time-series data, and a correction unit correcting the first time-series data based on the delay time.Type: GrantFiled: February 24, 2015Date of Patent: April 26, 2016Assignee: FANUC CORPORATIONInventors: Ya Cho, Kaimeng Wang
-
Publication number: 20150246442Abstract: A machine system including a sensor unit detecting periodically an acceleration at a tip part of a movable member, a data acquisition unit acquiring first time-series data of the acceleration at the tip part of the movable member corresponding to sensor signal received via a wireless signal path, a data calculation unit configured to calculate second time-series data corresponding to the first time-series data based on a driving command of the motor, a delay time calculation unit calculating a delay time of the first time-series data with respect to the second time-series data according to a degree of correlation between first time-series data and the second time-series data, and a correction unit correcting the first time-series data based on the delay time.Type: ApplicationFiled: February 24, 2015Publication date: September 3, 2015Applicant: FANUC CORPORATIONInventors: Ya Cho, Kaimeng Wang