Patents by Inventor Kaizad R. Mistry

Kaizad R. Mistry has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9735270
    Abstract: A process is described for manufacturing an improved PMOS semiconductor transistor. Recesses are etched into a layer of epitaxial silicon. Source and drain films are deposited in the recesses. The source and drain films are made of an alloy of silicon and germanium. The alloy is epitaxially deposited on the layer of silicon. The alloy thus has a lattice having the same structure as the structure of the lattice of the layer of silicon. However, due to the inclusion of the germanium, the lattice of the alloy has a larger spacing than the spacing of the lattice of the layer of silicon. The larger spacing creates a stress in a channel of the transistor between the source and drain films. The stress increases IDSAT and IDLIN of the transistor. An NMOS transistor can be manufactured in a similar manner by including carbon instead of germanium, thereby creating a tensile stress.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: August 15, 2017
    Assignee: Intel Corporation
    Inventors: Anand Murthy, Robert S. Chau, Tahir Ghani, Kaizad R. Mistry
  • Patent number: 9490364
    Abstract: A process is described for manufacturing an improved PMOS semiconductor transistor. Recesses are etched into a layer of epitaxial silicon. Source and drain films are deposited in the recesses. The source and drain films are made of an alloy of silicon and germanium. The alloy is epitaxially deposited on the layer of silicon. The alloy thus has a lattice having the same structure as the structure of the lattice of the layer of silicon. However, due to the inclusion of the germanium, the lattice of the alloy has a larger spacing than the spacing of the lattice of the layer of silicon. The larger spacing creates a stress in a channel of the transistor between the source and drain films. The stress increases IDSAT and IDLIN of the transistor. An NMOS transistor can be manufactured in a similar manner by including carbon instead of germanium, thereby creating a tensile stress.
    Type: Grant
    Filed: December 29, 2009
    Date of Patent: November 8, 2016
    Assignee: Intel Corporation
    Inventors: Anand Murthy, Robert S. Chau, Tahir Ghani, Kaizad R. Mistry
  • Publication number: 20160133747
    Abstract: A process is described for manufacturing an improved PMOS semiconductor transistor. Recesses are etched into a layer of epitaxial silicon. Source and drain films are deposited in the recesses. The source and drain films are made of an alloy of silicon and germanium. The alloy is epitaxially deposited on the layer of silicon. The alloy thus has a lattice having the same structure as the structure of the lattice of the layer of silicon. However, due to the inclusion of the germanium, the lattice of the alloy has a larger spacing than the spacing of the lattice of the layer of silicon. The larger spacing creates a stress in a channel of the transistor between the source and drain films. The stress increases IDSAT and IDLIN of the transistor. An NMOS transistor can be manufactured in a similar manner by including carbon instead of germanium, thereby creating a tensile stress.
    Type: Application
    Filed: December 22, 2015
    Publication date: May 12, 2016
    Inventors: ANAND MURTHY, ROBERT S. CHAU, TAHIR GHANI, KAIZAD R. MISTRY
  • Publication number: 20100102356
    Abstract: A process is described for manufacturing an improved PMOS semiconductor transistor. Recesses are etched into a layer of epitaxial silicon. Source and drain films are deposited in the recesses. The source and drain films are made of an alloy of silicon and germanium. The alloy is epitaxially deposited on the layer of silicon. The alloy thus has a lattice having the same structure as the structure of the lattice of the layer of silicon. However, due to the inclusion of the germanium, the lattice of the alloy has a larger spacing than the spacing of the lattice of the layer of silicon. The larger spacing creates a stress in a channel of the transistor between the source and drain films. The stress increases IDSAT and IDLIN of the transistor. An NMOS transistor can be manufactured in a similar manner by including carbon instead of germanium, thereby creating a tensile stress.
    Type: Application
    Filed: December 29, 2009
    Publication date: April 29, 2010
    Inventors: Anand Murthy, Robert S. Chau, Tahir Ghani, Kaizad R. Mistry
  • Publication number: 20100102401
    Abstract: A process is described for manufacturing an improved PMOS semiconductor transistor. Recesses are etched into a layer of epitaxial silicon. Source and drain films are deposited in the recesses. The source and drain films are made of an alloy of silicon and germanium. The alloy is epitaxially deposited on the layer of silicon. The alloy thus has a lattice having the same structure as the structure of the lattice of the layer of silicon. However, due to the inclusion of the germanium, the lattice of the alloy has a larger spacing than the spacing of the lattice of the layer of silicon. The larger spacing creates a stress in a channel of the transistor between the source and drain films. The stress increases IDSAT and IDLIN of the transistor. An NMOS transistor can be manufactured in a similar manner by including carbon instead of germanium, thereby creating a tensile stress.
    Type: Application
    Filed: December 29, 2009
    Publication date: April 29, 2010
    Inventors: Anand Murthy, Robert S. Chau, Tahir Ghani, Kaizad R. Mistry
  • Publication number: 20090065808
    Abstract: A process is described for manufacturing an improved PMOS semiconductor transistor. Recesses are etched into a layer of epitaxial silicon. Source and drain films are deposited in the recesses. The source and drain films are made of an alloy of silicon and germanium. The alloy is epitaxially deposited on the layer of silicon. The alloy thus has a lattice having the same structure as the structure of the lattice of the layer of silicon. However, due to the inclusion of the germanium, the lattice of the alloy has a larger spacing than the spacing of the lattice of the layer of silicon. The larger spacing creates a stress in a channel of the transistor between the source and drain films. The stress increases IDSAT and IDLIN of the transistor. An NMOS transistor can be manufactured in a similar manner by including carbon instead of germanium, thereby creating a tensile stress.
    Type: Application
    Filed: November 12, 2008
    Publication date: March 12, 2009
    Inventors: Anand Murthy, Robert S. Chau, Tahir Ghani, Kaizad R. Mistry
  • Patent number: 6956263
    Abstract: Field effect transistor structures include a channel region formed in a recessed portion of a substrate. The recessed channel portion permits the use of relatively thicker source/drain regions thereby providing lower source/drain extension resistivity while maintaining the physical separation needed to overcome various short channel effects. The surface of the recessed channel portion may be of a rectangular, polygonal, or curvilinear shape. In a further aspect of the present invention, transistors are manufactured by a process in which a damascene layer is patterned, the channel region is recessed by etch that is self-aligned to the patterned damascene layer, and the gate electrode is formed by depositing a material over the channel region and patterned damascene layer, polishing off the excess gate electrode material and removing the damascene layer.
    Type: Grant
    Filed: December 28, 1999
    Date of Patent: October 18, 2005
    Assignee: Intel Corporation
    Inventor: Kaizad R. Mistry
  • Patent number: 6885084
    Abstract: A process is described for manufacturing an improved PMOS semiconductor transistor. Recesses are etched into a layer of epitaxial silicon. Source and drain films are deposited in the recesses. The source and drain films are made of an alloy of silicon and germanium. The alloy is epitaxially deposited on the layer of silicon. The alloy thus has a lattice having the same structure as the structure of the lattice of the layer of silicon. However, due to the inclusion of the germanium, the lattice of the alloy has a larger spacing than the spacing of the lattice of the layer of silicon. The larger spacing creates a stress in a channel of the transistor between the source and drain films. The stress increases IDSAT and IDLIN of the transistor. An NMOS transistor can be manufactured in a similar manner by including carbon instead of germanium, thereby creating a tensile stress.
    Type: Grant
    Filed: July 23, 2003
    Date of Patent: April 26, 2005
    Assignee: Intel Corporation
    Inventors: Anand Murthy, Robert S. Chau, Tahir Ghani, Kaizad R. Mistry
  • Patent number: 6861318
    Abstract: A process is described for manufacturing an improved PMOS semiconductor transistor. Recesses are etched into a layer of epitaxial silicon. Source and drain films are deposited in the recesses. The source and drain films are made of an alloy of silicon and germanium. The alloy is epitaxially deposited on the layer of silicon. The alloy thus has a lattice having the same structure as the structure of the lattice of the layer of silicon. However, due to the inclusion of the germanium, the lattice of the alloy has a larger spacing than the spacing of the lattice of the layer of silicon. The larger spacing creates a stress in a channel of the transistor between the source and drain films. The stress increases IDSAT and IDLIN of the transistor. An NMOS transistor can be manufactured in a similar manner by including carbon instead of germanium, thereby creating a tensile stress.
    Type: Grant
    Filed: July 23, 2003
    Date of Patent: March 1, 2005
    Assignee: Intel Corporation
    Inventors: Anand Murthy, Robert S. Chau, Tahir Ghani, Kaizad R. Mistry
  • Patent number: 6803285
    Abstract: A method of forming an MOS integrated circuit having at least two types of NFET, each type having a different threshold voltage, and at least two types of PFET, each type having a different threshold voltage, includes forming at least four active regions in a substrate, each region having a different doping profile. A conventional two threshold voltage CMOS process is modified to produce four transistor threshold voltages with only one additional masked implant operation. This additional implant raises the threshold voltage of one type of MOSFET while lowering that of the other MOSFET type.
    Type: Grant
    Filed: December 4, 2002
    Date of Patent: October 12, 2004
    Assignee: Intel Corporation
    Inventors: Kaizad R. Mistry, Ian R. Post
  • Publication number: 20040084735
    Abstract: A process is described for manufacturing an improved PMOS semiconductor transistor. Recesses are etched into a layer of epitaxial silicon. Source and drain films are deposited in the recesses. The source and drain films are made of an alloy of silicon and germanium. The alloy is epitaxially deposited on the layer of silicon. The alloy thus has a lattice having the same structure as the structure of the lattice of the layer of silicon. However, due to the inclusion of the germanium, the lattice of the alloy has a larger spacing than the spacing of the lattice of the layer of silicon. The larger spacing creates a stress in a channel of the transistor between the source and drain films. The stress increases IDSAT and IDLIN of the transistor. An NMOS transistor can be manufactured in a similar manner by including carbon instead of germanium, thereby creating a tensile stress.
    Type: Application
    Filed: July 23, 2003
    Publication date: May 6, 2004
    Inventors: Anand Murthy, Robert S. Chau, Tahir Ghani, Kaizad R. Mistry
  • Publication number: 20040070035
    Abstract: A process is described for manufacturing an improved PMOS semiconductor transistor. Recesses are etched into a layer of epitaxial silicon. Source and drain films are deposited in the recesses. The source and drain films are made of an alloy of silicon and germanium. The alloy is epitaxially deposited on the layer of silicon. The alloy thus has a lattice having the same structure as the structure of the lattice of the layer of silicon. However, due to the inclusion of the germanium, the lattice of the alloy has a larger spacing than the spacing of the lattice of the layer of silicon. The larger spacing creates a stress in a channel of the transistor between the source and drain films. The stress increases IDSAT and IDLIN of the transistor. An NMOS transistor can be manufactured in a similar manner by including carbon instead of germanium, thereby creating a tensile stress.
    Type: Application
    Filed: July 23, 2003
    Publication date: April 15, 2004
    Inventors: Anand Murthy, Robert S. Chau, Tahir Ghani, Kaizad R. Mistry
  • Patent number: 6716046
    Abstract: Field effect transistor structures include a channel region formed in a recessed portion of a substrate. The recessed channel portion permits the use of relatively thicker source/drain regions thereby providing lower source/drain extension resistivity while maintaining the physical separation needed to overcome various short channel effects. The surface of the recessed channel portion may be of a rectangular, polygonal, or curvilinear shape. In a further aspect of the present invention, transistors are manufactured by a process in which a damascene layer is patterned, the channel region is recessed by etch that is self-aligned to the patterned damascene layer, and the gate electrode is formed by depositing a material over the channel region and patterned damascene layer, polishing off the excess gate electrode material and removing the damascene layer.
    Type: Grant
    Filed: July 30, 2002
    Date of Patent: April 6, 2004
    Assignee: Intel Corporation
    Inventor: Kaizad R. Mistry
  • Patent number: 6693331
    Abstract: A method of forming an MOS integrated circuit having at least two types of NFET, each type having a different threshold voltage, and at least two types of PFET, each type having a different threshold voltage, includes forming at least four active regions in a substrate, each region having a different doping profile. A conventional two threshold voltage CMOS process is modified to produce four transistor threshold voltages with only one additional masked implant operation. This additional implant raises the threshold voltage of one type of MOSFET while lowering that of the other MOSFET type.
    Type: Grant
    Filed: November 18, 1999
    Date of Patent: February 17, 2004
    Assignee: Intel Corporation
    Inventors: Kaizad R. Mistry, Ian R. Post
  • Patent number: 6621131
    Abstract: A process is described for manufacturing an improved PMOS semiconductor transistor. Recesses are etched into a layer of epitaxial silicon. Source and drain films are deposited in the recesses. The source and drain films are made of an alloy of silicon and germanium. The alloy is epitaxially deposited on the layer of silicon. The alloy thus has a lattice having the same structure as the structure of the lattice of the layer of silicon. However, due to the inclusion of the germanium, the lattice of the alloy has a larger spacing than the spacing of the lattice of the layer of silicon. The larger spacing creates a stress in a channel of the transistor between the source and drain films. The stress increases IDSAT and IDLIN of the transistor. An NMOS transistor can be manufactured in a similar manner by including carbon instead of germanium, thereby creating a tensile stress.
    Type: Grant
    Filed: November 1, 2001
    Date of Patent: September 16, 2003
    Assignee: Intel Corporation
    Inventors: Anand Murthy, Robert S. Chau, Tahir Ghani, Kaizad R. Mistry
  • Publication number: 20030119248
    Abstract: A method of forming an MOS integrated circuit having at least two types of NFET, each type having a different threshold voltage, and at least two types of PFET, each type having a different threshold voltage, includes forming at least four active regions in a substrate, each region having a different doping profile. A conventional two threshold voltage CMOS process is modified to produce four transistor threshold voltages with only one additional masked implant operation. This additional implant raises the threshold voltage of one type of MOSFET while lowering that of the other MOSFET type.
    Type: Application
    Filed: December 4, 2002
    Publication date: June 26, 2003
    Applicant: Intel Corporation
    Inventors: Kaizad R. Mistry, Ian R. Post
  • Publication number: 20030094659
    Abstract: A method of forming an MOS integrated circuit having at least two types of NFET, each type having a different threshold voltage, and at least two types of PFET, each type having a different threshold voltage, includes forming at least four active regions in a substrate, each region having a different doping profile. A conventional two threshold voltage CMOS process is modified to produce four transistor threshold voltages with only one additional masked implant operation. This additional implant raises the threshold voltage of one type of MOSFET while lowering that of the other MOSFET type.
    Type: Application
    Filed: November 18, 1999
    Publication date: May 22, 2003
    Inventors: KAIZAD R. MISTRY, IAN R. POST
  • Publication number: 20030080361
    Abstract: A process is described for manufacturing an improved PMOS semiconductor transistor. Recesses are etched into a layer of epitaxial silicon. Source and drain films are deposited in the recesses. The source and drain films are made of an alloy of silicon and germanium. The alloy is epitaxially deposited on the layer of silicon. The alloy thus has a lattice having the same structure as the structure of the lattice of the layer of silicon. However, due to the inclusion of the germanium, the lattice of the alloy has a larger spacing than the spacing of the lattice of the layer of silicon. The larger spacing creates a stress in a channel of the transistor between the source and drain films. The stress increases IDSAT and IDLIN of the transistor. An NMOS transistor can be manufactured in a similar manner by including carbon instead of germanium, thereby creating a tensile stress.
    Type: Application
    Filed: November 1, 2001
    Publication date: May 1, 2003
    Inventors: Anand Murthy, Robert S. Chau, Tahir Ghani, Kaizad R. Mistry
  • Publication number: 20030052333
    Abstract: Field effect transistor structures include a channel region formed in a recessed portion of a substrate. The recessed channel portion permits the use of relatively thicker source/drain regions thereby providing lower source/drain extension resistivity while maintaining the physical separation needed to overcome various short channel effects. The surface of the recessed channel portion may be of a rectangular, polygonal, or curvilinear shape. In a further aspect of the present invention, transistors are manufactured by a process in which a damascene layer is patterned, the channel region is recessed by etch that is self-aligned to the patterned damascene layer, and the gate electrode is formed by depositing a material over the channel region and patterned damascene layer, polishing off the excess gate electrode material and removing the damascene layer.
    Type: Application
    Filed: July 30, 2002
    Publication date: March 20, 2003
    Applicant: Intel Corporation
    Inventor: Kaizad R. Mistry
  • Patent number: 6362034
    Abstract: A method of fabricating a FET having a gate electrode with reduced susceptibility to the carrier depletion effect, includes increasing the amount of n-type dopant in the gate electrode of an n-channel FET. In one embodiment of the present invention, an integrated circuit including NFETs and PFETs is produced with increased n-type doping in the n-channel FET gate electrodes without the use of additional photomasking operations. Prior to polysilicon patterning, a phosphorus doped silica glass (PSG) is deposited over the polysilicon. Subsequent to patterning of the polysilicon, NFET areas are masked, and exposed PFET areas subjected to source/drain extension implant operations. During this sequence, the PSG is removed from PFET areas but remains in the NFET areas. An anneal is performed to drive the phosphorus from the PSG into the NFET gate electrodes. NFET source/drain extensions are formed, and conventional MOSFET processing operations may then be performed to complete the integrated circuit.
    Type: Grant
    Filed: December 20, 1999
    Date of Patent: March 26, 2002
    Assignee: Intel Corporation
    Inventors: Justin S. Sandford, Kaizad R. Mistry