Patents by Inventor Kaku Sato

Kaku Sato has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140174609
    Abstract: A method for manufacturing a high-strength steel sheet for a can, including (a) hot rolling a steel slab at a slab extraction temperature of 1200° C. or more and a finish rolling temperature of (Ar3 transformation temperature?30)° C. or more, the steel slab containing, on the basis of mass percent, more than 0.02%, but 0.10% or less of C, 0.10% or less of Si, 1.5% or less of Mn, 0.20% or less of P, 0.20% or less of S, 0.10% or less of Al, 0.0120% to 0.0250% of N, and the balance being Fe and incidental impurities; (b) coiling at a temperature of 650° C. or less; (c) pickling; (d) carrying out a first cold rolling; (e) continuously annealing; and (f) carrying out a second cold rolling at a reduction ratio of 10% or more and less than 20%.
    Type: Application
    Filed: March 3, 2014
    Publication date: June 26, 2014
    Applicant: JFE Steel Corporation
    Inventors: Makoto ARATANI, Toshikatsu KATO, Katsuhito KAWAMURA, Takumi TANAKA, Katsumi KOJIMA, Kaku SATO, Shigeko SUJITA, Masaki KOIZUMI
  • Publication number: 20110168303
    Abstract: A steel sheet for containers that has a hardness of 500 MPa or more and superior workability and a method for producing the steel sheet are provided. A steel containing, in percent by mass, 0.01% to 0.05% carbon, 0.04% or less silicon, 0.1% to 1.2% manganese, 0.10% or less sulfur, 0.001% to 0.100% aluminum, 0.10% or less nitrogen, and 0.0020% to 0.100% phosphorus, the balance being iron and incidental impurities, is subjected to hot rolling at a finishing temperature of (Ar3 transformation temperatute?30)° C. or more and a coiling temperature of 400° C. to 750° C., is subjected to pickling and cold rolling, is subjected to continuous annealing including overaging treatment, and is subjected to second cold rolling at a reduction rate of 20% to 50%, thus providing a high-strength steel sheet for containers that has a tensile strength of 500 MPa or more and a proof stress difference between width and rolling directions of 20 MPa or less.
    Type: Application
    Filed: April 10, 2009
    Publication date: July 14, 2011
    Inventors: Toshikatsu Kato, Makoto Aratani, Katsuhito Kawamura, Katsumi Kojima, Kaku Sato, Shigeko Sujita, Fumio Aoki
  • Publication number: 20110076177
    Abstract: A steel sheet for cans that has a yield stress of at least 500 Mpa after coating and baking and a method for manufacturing the steel sheet for cans are provided. The steel sheet for cans contains, on the basis of mass percent, C: more than 0.02% but 0.10% or less, Si: 0.10% or less, Mn: 1.5% or less, P: 0.20% or less, S: 0.20% or less, Al: 0.10% or less, N: 0.0120% to 0.0250%, dissolved N being 0.0100% or more, and a remainder of Fe and incidental impurities. A high-strength material can be obtained by maintaining the absolute quantity of dissolved N at a certain value or more and performing hardening by quench aging and strain aging, for example, in a printing process, a film lamination process, or a drying and baking process performed before can manufacturing. In the manufacture, hot rolling is performed at a slab extraction temperature of 1200° C. or more and a finish rolling temperature of (Ar3 transformation temperature—30)° C. or more, and coiling is performed at 650° C. or less.
    Type: Application
    Filed: April 1, 2009
    Publication date: March 31, 2011
    Applicant: JFE STEEL CORPORATION
    Inventors: Makoto Aratani, Toshikatsu Kato, Katsuhito Kawamura, Takumi Tanaka, Katsumi Kojima, Kaku Sato, Shigeko Sujita, Masaki Koizumi
  • Patent number: 6063214
    Abstract: A method of producing a steel sheet useful for making cans. The method steps include hot-rolling a slab consisting of about 0.0005 to 0.01 wt % C, about 0.001 to 0.04 wt % N (the total of C and N is at least about 0.008 wt %), about 0.05 to 2.0 wt % Mn, about 0.005 wt % or less Al, about 0.01 wt % or less O at a finish rolling temperature within a temperature range of about the Ar.sub.3 point to about 950.degree. C., coiling the rolled material at a temperature range of about 400 to 600.degree. C., cold rolling the material, continuously annealing the material at a temperature higher than the recrystallization temperature, and then temper-rolling the material. The steel sheet exhibits good workability during can making and which can be formed into a can having high strength.
    Type: Grant
    Filed: August 8, 1994
    Date of Patent: May 16, 2000
    Assignee: Kawasaki Steel Corporation
    Inventors: Chikako Fujinaga, Akio Tosaka, Toshiyuki Kato, Kaku Sato, Hideo Kuguminato, Yoshihiro Okawa
  • Patent number: 5725697
    Abstract: A method of manufacturing a cold-rolled can steel sheet having less planar anisotropy and achieving good workability. Rough-rolling is first performed on a continuously-cast slab. The slab has a composition essentially consisting of: C: 0.004 wt % or lower; Mn: 0.05-0.5 wt %; P: 0.02 wt % or lower; Al: 0.005-0.07 wt %; N: 0.004 wt % or lower; and Nb: 0.001-0.018 wt %, the rest being Fe and unavoidable impurities. A resultant sheet bar is then subjected to hot rolling which is completed at a finishing rolling temperature at an Ar.sub.3 transformation point or higher. The resultant sheet bar is coiled at a temperature range from 450.degree.-700.degree. C. Subsequently, the resultant sheet bar undergoes primary cold rolling before continuous annealing, which is performed at a recrystallization temperature or higher, and secondary cold rolling. The primary and secondary cold rolling are respectively performed at reduction ratios satisfying the following conditions of:88%.gtoreq.CR.sub.1 %+0.36.times.CR.sub.2 .
    Type: Grant
    Filed: December 21, 1994
    Date of Patent: March 10, 1998
    Assignee: Kawasaki Steel Corporation
    Inventors: Chikako Fujinaga, Akio Tosaka, Toshiyuki Kato, Kaku Sato, Hideo Kuguminato
  • Patent number: 5587027
    Abstract: A method for manufacturing a canning steel sheet with non-aging property and superior workability uses, as a starting material, an ultra-low-carbon steel slab composed of from 0.0015% to 0.0100% by weight C, up to 0.20% by weight Si, from 0.10% to 1.20% by weight Mn, from 0.02% to 0.10% by weight Al, from 0.005% to 0.040% by weight P, up to 0.015% by weight S, up to 0.005% by weight N, and balance iron and unavoidable impurities. The manufacturing method includes hot rolling the steel, cold rolling the steel at a reduction ratio not less than 70% after pickling, and recrystallization annealing the steel by using a continuous annealing furnace in an atmosphere having a hydrogen content not less than 3% and a dew point not lower than -20.degree. C. at a temperature not lower than 730.degree. C. so that the content of remained C in the steel is kept less than 0.0015% by weight. At least one element selected from Nb, Ti and B may be added in predetermined amounts to the above composition.
    Type: Grant
    Filed: February 15, 1995
    Date of Patent: December 24, 1996
    Assignee: Kawasaki Steel Corporation
    Inventors: Akio Tosaka, Chikako Fujinaga, Toshiyuki Kato, Kaku Sato, Hideo Kuguminato
  • Patent number: 5534089
    Abstract: A method of manufacturing a small planar anisotropic high-strength can steel plate. Hot-rolling is first performed on a steel slab at an Ar.sub.3 transformation point or higher to obtain hot rolled steel strip. The slab has a composition which essentially consists of and which satisfies the conditions of: C.ltoreq.0.004%, Si.ltoreq.0.02%, Mn=0.5%-3%, P.ltoreq.0.02%, Al=0.02%-0.05%, 0.008%.ltoreq.N.ltoreq.0.024%, and the rest being Fe and unavoidable impurities, wherein the conditions have the relationship of:Al%/N%>2. Then, the resultant strip is cooled at a cooling rate of 10.degree. C./s or higher so as to reach a temperature of 650.degree. C. or lower. The resultant strip is further coiled at a temperature in a range of from 550.degree. C. to 400.degree. C. Cold-rolling is performed on the resultant strip at a reduction ratio of 82% or higher preceded by removing a scale to obtain cold rolled steel strip.
    Type: Grant
    Filed: December 20, 1994
    Date of Patent: July 9, 1996
    Assignee: Kawasaki Steel Corporation
    Inventors: Chikako Fujinaga, Akio Tosaka, Toshiyuki Kato, Kaku Sato