Patents by Inventor Kalle Ahmavaara

Kalle Ahmavaara has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11916596
    Abstract: A distributed radio access network (RAN) is provided. A selected wireless transceiver node(s) in a selected coverage cell receives a radio frequency (RF) test signal(s). The selected wireless transceiver node(s) determines an effective gain value based on a predefined characteristic of the RF test signal(s). The selected wireless transceiver node(s) communicates the effective gain value and other related parameters to a server apparatus in the distributed RAN. The server apparatus determines a common gain value for the selected wireless transceiver node(s) in the selected coverage cell based on the parameters. Accordingly, the selected wireless transceiver node(s) operates based on the common gain value.
    Type: Grant
    Filed: August 5, 2021
    Date of Patent: February 27, 2024
    Assignee: CORNING OPTICAL COMMUNICATIONS LLC
    Inventors: Kalle Ahmavaara, Shirish Nagaraj, Deepak Pengoria
  • Patent number: 11889305
    Abstract: Present systems and methods provide ways to provide access services to connecting wireless devices particularly for (but not limited to) neutral host networks. Steps include executing authentication between a connecting wireless device and a service provider, receiving an address of a remote gateway from the service provider, and providing access service for the wireless device including forwarding data received from the wireless device to the indicated remote gateway address in forwarding wireless device associated data received from the remote gateway address to the wireless device. Other ways are also disclosed.
    Type: Grant
    Filed: September 23, 2020
    Date of Patent: January 30, 2024
    Assignee: CORNING OPTICAL COMMUNICATIONS LLC
    Inventor: Kalle Ahmavaara
  • Publication number: 20230388808
    Abstract: Systems and methods for dynamic allocation of spectrum among cross-interfering radio nodes of wireless communications systems are disclosed. Multiple radio nodes may be deployed within a geographical region, and each radio node may support wireless communication over spectrum in which access is arbitrated by an external service not under the control of the operator of the radio node. Each radio node is configured to detect radio conditions which may indicate coexistence between the radio node and a neighboring radio node. A network entity associated with the radio node obtains radio condition information and determines a coexistence status between the radio node and the neighboring radio node, such as whether coexistence with the neighboring radio node is tolerable or intolerable. The network entity reports an indication of the coexistence status to a spectrum server, and the spectrum server reallocates the spectrum among the radio nodes.
    Type: Application
    Filed: August 9, 2023
    Publication date: November 30, 2023
    Inventor: Kalle Ahmavaara
  • Patent number: 11812372
    Abstract: Fifth generation (5G) non-standalone (NSA) radio access system employing virtual fourth generation (4G) master connection to enable dual system data connectivity. The 5G NSA radio access system employs a virtual 4G radio access node (RAN) to provide a logical master data connection to a user mobile communications device, and a 5G RAN to provide an additional, secondary high-speed data plane between the user mobile communications device to a core network. The virtual 4G RAN does not provide an actual 4G radio connection over-the-air to the user mobile communications device. Instead, the signaling transported between the user mobile communications device and the virtual 4G RAN is provided over a non-radio connection, such as an internet protocol (IP) connection. In this manner, the deployment of the 5G NSA radio access system employing the virtual 4G RAN can be achieved without updating existing 4G RANs and/or without deploying a new 4G RAN infrastructure.
    Type: Grant
    Filed: March 10, 2022
    Date of Patent: November 7, 2023
    Assignee: CORNING OPTICAL COMMUNICATIONS LLC
    Inventors: Kalle Ahmavaara, Yashodhan A Dandekar
  • Patent number: 11758409
    Abstract: Systems and methods for dynamic allocation of spectrum among cross-interfering radio nodes of wireless communications systems are disclosed. Multiple radio nodes may be deployed within a geographical region, and each radio node may support wireless communication over spectrum in which access is arbitrated by an external service not under the control of the operator of the radio node. Each radio node is configured to detect radio conditions which may indicate coexistence between the radio node and a neighboring radio node. A network entity associated with the radio node obtains radio condition information and determines a coexistence status between the radio node and the neighboring radio node, such as whether coexistence with the neighboring radio node is tolerable or intolerable. The network entity reports an indication of the coexistence status to a spectrum server, and the spectrum server reallocates the spectrum among the radio nodes.
    Type: Grant
    Filed: June 17, 2021
    Date of Patent: September 12, 2023
    Assignee: Corning Optical Communications LLC
    Inventor: Kalle Ahmavaara
  • Patent number: 11665602
    Abstract: Automatic cell discovery of a source radio access network (RAN) cell by a neighboring, target RAN by initiating a fake handover of a user equipment (UE) from a source RAN cell to a target RAN. A source RAN cell initiates a handover request using handover signaling to the target RAN(s). The handover request is a fake handover request without actual intention of handing over UE to the target RAN. The source RAN cell includes information in initiated handover request that can be used by target RAN to discover source RAN cell. The handover request will fail, because the handover request is not for any actual UE moving from the source RAN cell to the target RAN. However, the target RAN becomes aware of the source RAN cell as a result of this process and can add the source RAN cell (e.g., its EARFCN) to a list of its neighboring cells.
    Type: Grant
    Filed: August 9, 2021
    Date of Patent: May 30, 2023
    Assignee: Corning Optical Communications LLC
    Inventor: Kalle Ahmavaara
  • Publication number: 20220386133
    Abstract: Dynamic network resource management in a wireless communications system (WCS) is disclosed. The WCS includes multiple radio access network (RAN) remote units each configured to communicate a radio frequency (RF) signal(s) in a respective one of multiple coverage cells. The multiple coverage cells can be associated with a number of cell groups, with each of the cell groups including one or more of the multiple coverage cells. Given that all of the cell groups are operating based on a set of network functions configured for the WCS, the WCS further employs a network device to dynamically determine a set of sharable network functions and share the set of sharable network functions among the cell groups. By dynamically sharing the sharable network functions across the cell groups, it is possible to maximize throughput in each of the cell groups based on the set of sharable network functions.
    Type: Application
    Filed: May 25, 2022
    Publication date: December 1, 2022
    Inventors: Syed Noman Ahmad, Kalle Ahmavaara, Risto Karkkainen, Shirish Nagaraj, Deepak Pengoria
  • Patent number: 11419024
    Abstract: Discovery of a neighbor radio access system by a user mobile communications device serviced in a radio access network (RAN) for reporting to a serving system in the RAN. User mobile communications device serviced by a RAN is configured to scan one or more frequency ranges (e.g., bands) to discover other neighbor radio access systems. This is opposed to, for example, the user mobile communications device only searching for transmitted communications signals at specific center frequency (e.g., an EARFCN). There may be other radio access systems that operate neighbor cells and in other frequency bands in proximity the RAN serving the user mobile communications device. Discovered neighboring radio access systems can be reported by the user mobile communications device to its serving RAN in a measurement report, which can then be used by the serving RAN for other functionalities, such as trigger handovers of user mobile communications device for example.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: August 16, 2022
    Assignee: Corning Optical Communications LLC
    Inventors: Kalle Ahmavaara, Hithesh Nama
  • Publication number: 20220201599
    Abstract: Fifth generation (5G) non-standalone (NSA) radio access system employing virtual fourth generation (4G) master connection to enable dual system data connectivity. The 5G NSA radio access system employs a virtual 4G radio access node (RAN) to provide a logical master data connection to a user mobile communications device, and a 5G RAN to provide an additional, secondary high-speed data plane between the user mobile communications device to a core network. The virtual 4G RAN does not provide an actual 4G radio connection over-the-air to the user mobile communications device. Instead, the signaling transported between the user mobile communications device and the virtual 4G RAN is provided over a non-radio connection, such as an internet protocol (IP) connection. In this manner, the deployment of the 5G NSA radio access system employing the virtual 4G RAN can be achieved without updating existing 4G RANs and/or without deploying a new 4G RAN infrastructure.
    Type: Application
    Filed: March 10, 2022
    Publication date: June 23, 2022
    Inventors: Kalle Ahmavaara, Yashodhan A Dandekar
  • Patent number: 11304126
    Abstract: Fifth generation (5G) non-standalone (NSA) radio access system employing virtual fourth generation (4G) master connection to enable dual system data connectivity. The 5G NSA radio access system employs a virtual 4G radio access node (RAN) to provide a logical master data connection to a user mobile communications device, and a 5G RAN to provide an additional, secondary high-speed data plane between the user mobile communications device to a core network. The virtual 4G RAN does not provide an actual 4G radio connection over-the-air to the user mobile communications device. Instead, the signaling transported between the user mobile communications device and the virtual 4G RAN is provided over a non-radio connection, such as an internet protocol (IP) connection. In this manner, the deployment of the 5G NSA radio access system employing the virtual 4G RAN can be achieved without updating existing 4G RANs and/or without deploying a new 4G RAN infrastructure.
    Type: Grant
    Filed: June 29, 2020
    Date of Patent: April 12, 2022
    Assignee: Corning Optical Communications LLC
    Inventors: Kalle Ahmavaara, Yashodhan A Dandekar
  • Publication number: 20210367673
    Abstract: A distributed radio access network (RAN) is provided. A selected wireless transceiver node(s) in a selected coverage cell receives a radio frequency (RF) test signal(s). The selected wireless transceiver node(s) determines an effective gain value based on a predefined characteristic of the RF test signal(s). The selected wireless transceiver node(s) communicates the effective gain value and other related parameters to a server apparatus in the distributed RAN. The server apparatus determines a common gain value for the selected wireless transceiver node(s) in the selected coverage cell based on the parameters. Accordingly, the selected wireless transceiver node(s) operates based on the common gain value.
    Type: Application
    Filed: August 5, 2021
    Publication date: November 25, 2021
    Inventors: Kalle Ahmavaara, Shirish Nagaraj, Deepak Pengoria
  • Publication number: 20210368406
    Abstract: Automatic cell discovery of a source radio access network (RAN) cell by a neighboring, target RAN by initiating a fake handover of a user equipment (UE) from a source RAN cell to a target RAN. A source RAN cell initiates a handover request using handover signaling to the target RAN(s). The handover request is a fake handover request without actual intention of handing over UE to the target RAN. The source RAN cell includes information in initiated handover request that can be used by target RAN to discover source RAN cell. The handover request will fail, because the handover request is not for any actual UE moving from the source RAN cell to the target RAN. However, the target RAN becomes aware of the source RAN cell as a result of this process and can add the source RAN cell (e.g., its EARFCN) to a list of its neighboring cells.
    Type: Application
    Filed: August 9, 2021
    Publication date: November 25, 2021
    Inventor: Kalle Ahmavaara
  • Publication number: 20210314781
    Abstract: Systems and methods for dynamic allocation of spectrum among cross-interfering radio nodes of wireless communications systems are disclosed. Multiple radio nodes may be deployed within a geographical region, and each radio node may support wireless communication over spectrum in which access is arbitrated by an external service not under the control of the operator of the radio node. Each radio node is configured to detect radio conditions which may indicate coexistence between the radio node and a neighboring radio node. A network entity associated with the radio node obtains radio condition information and determines a coexistence status between the radio node and the neighboring radio node, such as whether coexistence with the neighboring radio node is tolerable or intolerable. The network entity reports an indication of the coexistence status to a spectrum server, and the spectrum server reallocates the spectrum among the radio nodes.
    Type: Application
    Filed: June 17, 2021
    Publication date: October 7, 2021
    Inventor: Kalle Ahmavaara
  • Patent number: 11089524
    Abstract: Automatic cell discovery of a source radio access network (RAN) cell by a neighboring, target RAN by initiating a fake handover of a user equipment (UE) from a source RAN cell to a target RAN. A source RAN cell initiates a handover request using handover signaling to the target RAN(s). The handover request is a fake handover request without actual intention of handing over UE to the target RAN. The source RAN cell includes information in initiated handover request that can be used by target RAN to discover source RAN cell. The handover request will fail, because the handover request is not for any actual UE moving from the source RAN cell to the target RAN. However, the target RAN becomes aware of the source RAN cell as a result of this process and can add the source RAN cell (e.g., its EARFCN) to a list of its neighboring cells.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: August 10, 2021
    Assignee: Corning Optical Communications LLC
    Inventor: Kalle Ahmavaara
  • Publication number: 20210006975
    Abstract: Present systems and methods provide ways to provide access services to connecting wireless devices particularly for (but not limited to) neutral host networks. Steps include executing authentication between a connecting wireless device and a service provider, receiving an address of a remote gateway from the service provider, and providing access service for the wireless device including forwarding data received from the wireless device to the indicated remote gateway address in forwarding wireless device associated data received from the remote gateway address to the wireless device. Other ways are also disclosed.
    Type: Application
    Filed: September 23, 2020
    Publication date: January 7, 2021
    Inventor: Kalle Ahmavaara
  • Publication number: 20200396659
    Abstract: Discovery of a neighbor radio access system by a user mobile communications device serviced in a radio access network (RAN) for reporting to a serving system in the RAN. User mobile communications device serviced by a RAN is configured to scan one or more frequency ranges (e.g., bands) to discover other neighbor radio access systems. This is opposed to, for example, the user mobile communications device only searching for transmitted communications signals at specific center frequency (e.g., an EARFCN). There may be other radio access systems that operate neighbor cells and in other frequency bands in proximity the RAN serving the user mobile communications device. Discovered neighboring radio access systems can be reported by the user mobile communications device to its serving RAN in a measurement report, which can then be used by the serving RAN for other functionalities, such as trigger handovers of user mobile communications device for example.
    Type: Application
    Filed: August 31, 2020
    Publication date: December 17, 2020
    Inventors: Kalle Ahmavaara, Hithesh Nama
  • Patent number: 10812987
    Abstract: In particular, systems and methods according to present principles configure physical eNodeB to have multiple virtual eNodeBs, where each virtual eNodeBs corresponds to a particular PLMN. Thus, each PLMN has its own virtual eNodeB which is hosted on a common shared physical eNodeB.
    Type: Grant
    Filed: April 14, 2020
    Date of Patent: October 20, 2020
    Assignee: Corning Optical Communications LLC
    Inventors: Kalle Ahmavaara, Hithesh Nama
  • Publication number: 20200329425
    Abstract: Fifth generation (5G) non-standalone (NSA) radio access system employing virtual fourth generation (4G) master connection to enable dual system data connectivity. The 5G NSA radio access system employs a virtual 4G radio access node (RAN) to provide a logical master data connection to a user mobile communications device, and a 5G RAN to provide an additional, secondary high-speed data plane between the user mobile communications device to a core network. The virtual 4G RAN does not provide an actual 4G radio connection over-the-air to the user mobile communications device. Instead, the signaling transported between the user mobile communications device and the virtual 4G RAN is provided over a non-radio connection, such as an internet protocol (IP) connection. In this manner, the deployment of the 5G NSA radio access system employing the virtual 4G RAN can be achieved without updating existing 4G RANs and/or without deploying a new 4G RAN infrastructure.
    Type: Application
    Filed: June 29, 2020
    Publication date: October 15, 2020
    Inventors: Kalle Ahmavaara, Yashodhan A. Dandekar
  • Patent number: 10790903
    Abstract: A distributed radio access network (RAN) is provided. A selected wireless transceiver node(s) in a selected coverage cell receives a radio frequency (RF) test signal(s). The selected wireless transceiver node(s) determines an effective gain value based on a predefined characteristic of the RF test signal(s). The selected wireless transceiver node(s) communicates the effective gain value and other related parameters to a server apparatus in the distributed RAN. The server apparatus determines a common gain value for the selected wireless transceiver node(s) in the selected coverage cell based on the parameters. Accordingly, the selected wireless transceiver node(s) operates based on the common gain value.
    Type: Grant
    Filed: February 6, 2019
    Date of Patent: September 29, 2020
    Assignee: Corning Optical Communications LLC
    Inventors: Kalle Ahmavaara, Shirish Nagaraj, Deepak Pengoria
  • Patent number: 10764798
    Abstract: Discovery of a neighbor radio access system by a user mobile communications device serviced in a radio access network (RAN) for reporting to a serving system in the RAN. User mobile communications device serviced by a RAN is configured to scan one or more frequency ranges (e.g., bands) to discover other neighbor radio access systems. This is opposed to, for example, the user mobile communications device only searching for transmitted communications signals at specific center frequency (e.g., an EARFCN). There may be other radio access systems that operate neighbor cells and in other frequency bands in proximity the RAN serving the user mobile communications device. Discovered neighboring radio access systems can be reported by the user mobile communications device to its serving RAN in a measurement report, which can then be used by the serving RAN for other functionalities, such as trigger handovers of user mobile communications device for example.
    Type: Grant
    Filed: November 16, 2017
    Date of Patent: September 1, 2020
    Assignee: Corning Optical Communications LLC
    Inventors: Kalle Ahmavaara, Hithesh Nama