Patents by Inventor Kalle Kallio

Kalle Kallio has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240002560
    Abstract: The invention provides a process for the preparation of a multimodal ethylene polymer in a multistage process in the presence of a catalyst comprising a complex of formula (lx) wherein each X is a sigma donor ligand; each Het is independently a monocyclic or multicyclic heteroaromatic or heterocyclic group containing at least one heteroatom selected from O, N or S; L is a carbon, silicon or germanium based divalent bridge in which one or two backbone atoms link the ligands; M is Ti, Zr or Hf; each R1 is the same or different and is a linear CMO alkyl group, or linear CHO alkoxy, each n is 0 to 3; each R2 is the same or different and is a C1-10 alkyl group, C1-10 alkoxy group or —Si(R)3 group; each R is the same or different and is C1-10 alkyl or phenyl group optionally substituted by 1 to 3 C1-6 alkyl groups; and eachp is 0 to 3;
    Type: Application
    Filed: July 23, 2021
    Publication date: January 4, 2024
    Inventors: Georgy KIPIANI, Jyrki KAUHANEN, Felice DE SANTIS, Marja MUSTONEN, Matthias HOFF, Kalin SIMEONOV, Kimmo HAKALA, Jarkko HASSINEN, Maria RANIERI, Esko SAIKKONEN, Tiina HÄMÄLÄINEN, Stefan POLLHAMMER, Pascal CASTRO, Irfan SAEED, Kalle KALLIO
  • Publication number: 20220220231
    Abstract: New, improved silica supported catalyst system, which comprises a specific class of metallocene complexes in combination with a boron containing cocatalyst and an aluminoxane cocatalyst, its use for producing propylene homopolymers, propylene copolymers, especially with ethylene, as well as heterophasic propylene copolymers, preferably in a multistep process including a gas phase polymerization step.
    Type: Application
    Filed: May 20, 2020
    Publication date: July 14, 2022
    Inventors: Luigi Maria Cristoforo RESCONI, Wilfried TOELTSCH, Ville VIRKKUNEN, Kalle KALLIO, Soile LUSTIG, Noureddine AJELLAL, Marja MUSTONEN, Alexander REZNICHENKO
  • Patent number: 10982019
    Abstract: A process for the offline deactivation of at least one single site catalyst comprising contacting said catalyst with a deactivating agent selected from an aprotic low molecular weight carbonyl group containing organic compound or an aprotic low molecular weight orthoester or an aprotic low molecular weight acetal compound.
    Type: Grant
    Filed: June 22, 2017
    Date of Patent: April 20, 2021
    Assignee: BOREALIS AG
    Inventors: Irfan Saeed, Katri Nikkilä, Kalle Kallio
  • Publication number: 20190330389
    Abstract: A process for the offline deactivation of at least one single site catalyst comprising contacting said catalyst with a deactivating agent selected from an aprotic low molecular weight carbonyl group containing organic compound or an aprotic low molecular weight orthoester or an aprotic low molecular weight acetal compound.
    Type: Application
    Filed: June 22, 2017
    Publication date: October 31, 2019
    Inventors: Irfan Saeed, Katri Nikkilä, Kalle Kallio
  • Patent number: 10457758
    Abstract: Supported Ziegler-Natta ethylene polymerization procatalyst comprising special bi-(oxygen containing ring) compounds as internal donor, as well as a process for preparing the same and use of such a procatalyst for preparing a catalyst system used in the polymerization of ethylene for producing high molecular weight polyethylenes.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: October 29, 2019
    Assignee: BOREALIS AG
    Inventors: Kumudini Jayaratne, Elina Hamalainen, Kalle Kallio
  • Patent number: 9475890
    Abstract: A catalyst comprising (i) a metallocene complex of a group (IV) metal said metallocene comprising at least two cyclopentadienyl type ligands; (ii) a boron cocatalyst; and (iii) an aluminoxane cocatalyst; said catalyst being in solid form, preferably in solid particulate form, and being free from an external carrier.
    Type: Grant
    Filed: October 17, 2013
    Date of Patent: October 25, 2016
    Assignee: Borealis AG
    Inventors: Kalle Kallio, Marja Mustonen, Lauri Huhtanen, John Severn, Pascal Castro, Ville Virkkunen, Anu-Leena Hongell, Ismo Lehtiniemi
  • Patent number: 9469700
    Abstract: A process for the polymerization of at least one olefin comprising reacting said at least one olefin with a catalyst comprising: (i) a metallocene complex said metallocene comprising at least two cyclopentadienyl type ligands; (ii) a boron cocatalyst; and (iii) an aluminoxane cocatalyst; said catalyst being in solid form, preferably in solid particulate form, and being free from an external carrier.
    Type: Grant
    Filed: October 17, 2013
    Date of Patent: October 18, 2016
    Assignee: Borealis AG
    Inventors: Kalle Kallio, Marja Mustonen, Lauri Huhtanen, John Severn, Pascal Castro, Ville Virkkunen, Anu-Leena Hongell, Ismo Lehtiniemi
  • Patent number: 9469708
    Abstract: A process for the preparation of a propylene homopolymer comprising polymerizing propylene in the presence of a catalyst comprising: (i) a metallocene complex of a group (IV) metal said metallocene comprising at least two cyclopentadienyl type ligands; (ii) a boron cocatalyst; and (iii) an aluminoxane cocatalyst; said catalyst being in solid form, preferably in solid particulate form, and being free from an external carrier; preferably wherein the melting point of the propylene polymer is controlled by adjusting the amount of or nature of the boron cocatalyst.
    Type: Grant
    Filed: October 17, 2013
    Date of Patent: October 18, 2016
    Assignee: Borealis AG
    Inventors: Pascal Castro, Kalle Kallio, Laurie Huhtanen, Ville Virkkunen, Noureddine Ajellal
  • Publication number: 20150337060
    Abstract: A process for the preparation of a propylene homopolymer comprising polymerising propylene in the presence of a catalyst comprising: (i) a metallocene complex of a group (IV) metal said metallocene comprising at least two cyclopentadienyl type ligands; (ii) a boron cocatalyst; and (iii) an aluminoxane cocatalyst; said catalyst being in solid form, preferably in solid particulate form, and being free from an external carrier; preferably wherein the melting point of the propylene polymer is controlled by adjusting the amount of or nature of the boron cocatalyst.
    Type: Application
    Filed: October 17, 2013
    Publication date: November 26, 2015
    Applicant: BOREALIZ AG
    Inventors: Pascal Castro, Kalle Kallio, Laurie Huhtanen, Ville Virkkunen
  • Publication number: 20150315316
    Abstract: Supported Ziegler-Natta ethylene polymerisation procatalyst comprising special bi-(oxygen containing ring) compounds as internal donor, as well as a process for preparing the same and use of such a procatalyst for preparing a catalyst system used in the polymerisation of ethylene for producing high molecular weight polyethylenes.
    Type: Application
    Filed: December 20, 2013
    Publication date: November 5, 2015
    Inventors: Kumudini JAYARATNE, Elina HAMALAINE, Kalle KALLIO
  • Publication number: 20150266979
    Abstract: A catalyst comprising (i) a metallocene complex of a group (IV) metal said metallocene comprising at least two cyclopentadienyl type ligands; (ii) a boron cocatalyst; and (iii) an aluminoxane cocatalyst; said catalyst being in solid form, preferably in solid particulate form, and being free from an external carrier.
    Type: Application
    Filed: October 17, 2013
    Publication date: September 24, 2015
    Applicant: BOREALIS AG
    Inventors: Kalle Kallio, Marja Mustonen, Lauri Huhtanen, John Severn, Pascal Castro, Ville Virkkunen, Anu-Leena Hongell, Ismo Lehtiniemi
  • Publication number: 20150259442
    Abstract: A process for the polymerisation of at least one olefin comprising reacting said at least one olefin with a catalyst comprising: (i) a metallocene complex said metallocene comprising at least two cyclopentadienyl type ligands; (ii) a boron cocatalyst; and (iii) an aluminoxane cocatalyst; said catalyst being in solid form, preferably in solid particulate form, and being free from an external carrier.
    Type: Application
    Filed: October 17, 2013
    Publication date: September 17, 2015
    Inventors: Kalle Kallio, Marja Mustonen, Lauri Huhtanen, John Severn, Pascal Castro, Ville Virkkunen, Anu-Leena Hongell, Ismo Lehtiniemi
  • Patent number: 8962509
    Abstract: Process for the preparation of a solid catalyst system (CS) comprising the steps of preparing a liquid clathrate (LC) comprising (a) a lattice (L) being the reaction product of (i) aluminoxane (A), (ii) an organometallic compound (O) of a transition metal (M) of Group 3 to 10 of the Periodic Table (IUPAC 2007) or of an actinide or lanthanide, and (i) a compound (B) being effective to form with the aluminoxane (A) and the organometallic compound (O) the lattice (L), and (b) a guest (G) being an hydrocarbon compound (HC), and subsequently precipitating said liquid clathrate (LC) obtaining said solid catalyst system (SC).
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: February 24, 2015
    Assignee: Borealis AG
    Inventors: Kalle Kallio, Marja Mustonen, Pertti Elo, Peter Denifl, John Severn
  • Patent number: 8828901
    Abstract: Process for the preparation of a solid catalyst system comprising the steps of generating an emulsion by dispersing a liquid clathrate in a solution wherein (i) the solution constitutes the continuous phase of the emulsion and (ii) the liquid clathrate constitutes in form of droplets the dispersed phase of the emulsion, solidifying said dispersed phase to convert said droplets to solid particles and optionally recovering said particles to obtain said catalyst system, wherein the liquid clathrate comprises a lattice being the reaction product of aluminoxane, an organometallic compound of a transition metal of Group 3 to 10 of the Periodic Table (IUPAC 2007) or of an actinide or lanthanide, and a further compound being effective to form with the aluminoxane and the organometallic compound the lattice, and a guest being an hydrocarbon compound, and the solution comprises a silicon fluid and a hydrocarbon solvent.
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: September 9, 2014
    Assignee: Borealis AG
    Inventors: Kalle Kallio, Marja Mustonen, Pertti Elo, John Severn, Peter Denifl
  • Patent number: 8829128
    Abstract: Process for the preparation of a polypropylene, wherein propylene is polymerized optionally with a comonomer selected from the group consisting of ethylene, a C4-C20 ?-olefin and mixtures thereof, in the presence of a catalyst system comprising solid catalyst particles, wherein the solid catalyst particles (a) comprise a transition metal compound of formula (I) LmRnMXq (I) wherein “M” is a transition metal of anyone of the groups 3 to 10 of the periodic table (IUPAC), each “X” is independently a monovalent anionic ?-ligand, each “L” is independently an organic ligand which coordinates to the transition metal (M), each “R” is a bridging group linking two organic ligands (L), “m” is 2 or 3, preferably 2, “n” is 0, 1 or 2, preferably 1, “q” is 1, 2 or 3, preferably 2, m+q is equal to the valency of the transition metal (M), (c) comprise a cocatalyst (Co) comprising an element (E) of group 13 of the periodic table (IUPAC), preferably a cocatalyst (Co) comprising a compound of A1, wherein further the loss of activ
    Type: Grant
    Filed: June 16, 2010
    Date of Patent: September 9, 2014
    Assignee: Borealis AG
    Inventors: Lauri Huhtanen, Kalle Kallio, Pascal Castro
  • Publication number: 20130253152
    Abstract: Process for the preparation of a solid catalyst system (CS) comprising the steps of preparing a liquid clathrate (LC) comprising (a) a lattice (L) being the reaction product of (i) aluminoxane (A), (ii) an organometallic compound (O) of a transition metal (M) of Group 3 to 10 of the Periodic Table (IUPAC 2007) or of an actinide or lanthanide, and (i) a compound (B) being effective to form with the aluminoxane (A) and the organometallic compound (O) the lattice (L), and (b) a guest (G) being an hydro-carbon compound (HC), and subsequently precipitating said liquid clathrate (LC) obtaining said solid catalyst system (SC).
    Type: Application
    Filed: April 28, 2011
    Publication date: September 26, 2013
    Applicant: BOREALIS AG
    Inventors: Kalle Kallio, Marja Mustonen, Pertti Elo, Peter Denifl, John Severn
  • Publication number: 20130245212
    Abstract: Process for the preparation of a solid catalyst system comprising the steps of generating an emulsion by dispersing a liquid clathrate in a solution wherein (i) the solution constitutes the continuous phase of the emulsion and (ii) the liquid clathrate constitutes in form of droplets the dispersed phase of the emulsion, solidifying said dispersed phase to convert said droplets to solid particles and optionally recovering said particles to obtain said catalyst system, wherein the liquid clathrate comprises a lattice being the reaction product of aluminoxane, an organometallic compound of a transition metal of Group 3 to 10 of the Periodic Table (IUPAC 2007) or of an actinide or lanthanide, and a further compound being effective to form with the aluminoxane and the organometallic compound the lattice, and a guest being an hydrocarbon compound, and the solution comprises a silicon fluid and a hydrocarbon solvent.
    Type: Application
    Filed: April 28, 2011
    Publication date: September 19, 2013
    Applicant: BOREALIS AG
    Inventors: Kalle Kallio, Marja Mustonen, Pertti Elo, John Severn, Peter Denifl
  • Patent number: 8409681
    Abstract: A process is disclosed for producing a multi-modal linear low density polyethylene in at least two staged reactors connected in series, comprising (i) polymerizing in a first slurry phase stage ethylene monomers with a Ziegler-Natta polymerization catalyst system to obtain a first polyethylene fraction component (A); and (ii) polymerizing in a second gas or slurry phase stage ethylene monomers with a Ziegler-Natta polymerization catalyst system to obtain a second polyethylene fraction component (B). The Ziegler-Natta polymerization catalyst system comprises: 1) a solid procatalyst formed by contacting at least: a) a Mg-alcoholate complex of formula (I) b) an aluminum compound of formula (II); and c) a vanadium compound and a titanium compound having a molar ratio (V:Ti) from 10:90 to 90:10; and 2) one or more organometallic cocatalvsts of formula (III). The linear low density polyethylene shows an improved comonomer composition distribution Formulas (I), (II), and (III) are described herein.
    Type: Grant
    Filed: February 22, 2010
    Date of Patent: April 2, 2013
    Assignee: Borealis AG
    Inventors: Thomas Garoff, Paivi Waldvogel, Kalle Kallio, Virginie Eriksson, Aki Aittola, Esa Kokko
  • Publication number: 20120277384
    Abstract: Process for the preparation of a polypropylene, wherein propylene is polymerised optionally with a comonomer selected from the group consisting of ethylene, a C4-C20 ?-olefin and mixtures thereof, in the presence of a catalyst system comprising solid catalyst particles, wherein the solid catalyst particles (a) comprise a transition metal compound of formula (I) LmRnMXq (I) wherein “M” is a transition metal of anyone of the groups 3 to 10 of the periodic table (IUPAC), each “X” is independently a monovalent anionic ?-ligand, each “L” is independently an organic ligand which coordinates to the transition metal (M), each “R” is a bridging group linking two organic ligands (L), “m” is 2 or 3, preferably 2, “n” is 0, 1 or 2, preferably 1, “q” is 1, 2 or 3, preferably 2, m+q is equal to the valency of the transition metal (M), (c) comprise a cocatalyst (Co) comprising an element (E) of group 13 of the periodic table (IUPAC), preferably a cocatalyst (Co) comprising a compound of Al, wherein further the loss of activ
    Type: Application
    Filed: June 16, 2010
    Publication date: November 1, 2012
    Applicant: Borealis AG
    Inventors: Lauri Huhtanen, Kalle Kallio, Pascal Castro
  • Publication number: 20120095172
    Abstract: Ziegler-Natta catalyst composition capable of producing ethylene/alpha-olefins copolymers, particularly linear low density polyethylene; the composition having an improved stability of its behaviour during polymerization in respect to time. The Ziegler-Natta catalyst composition comprises: 1.
    Type: Application
    Filed: April 26, 2010
    Publication date: April 19, 2012
    Inventors: Thomas Garoff, Paivi Waldvogel, Kalle Kallio, Virginie Eriksson