Patents by Inventor Kalyan C. Kolluru

Kalyan C. Kolluru has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240088132
    Abstract: An integrated circuit structure includes a sub-fin having (i) a first portion including a p-type dopant and (ii) a second portion including an n-type dopant. A first body of semiconductor material is above the first portion of the sub-fin, and a second body of semiconductor material is above the second portion of the sub-fin. In an example, the first portion of the sub-fin and the second portion of the sub-fin are in contact with each other, to form a PN junction of a diode. For example, the first portion of the sub-fin is part of an anode of the diode, and wherein the second portion of the sub-fin is part of a cathode of the diode.
    Type: Application
    Filed: September 13, 2022
    Publication date: March 14, 2024
    Applicant: Intel Corporation
    Inventors: Nicholas A. Thomson, Kalyan C. Kolluru, Ayan Kar, Chu-Hsin Liang, Benjamin Orr, Biswajeet Guha, Brian Greene, Chung-Hsun Lin, Sabih U. Omar, Sameer Jayanta Joglekar
  • Publication number: 20240088133
    Abstract: An integrated circuit structure includes a sub-fin having a first type of dopant, a first diffusion region having the first type of dopant and in contact with the sub-fin, and a second diffusion region and a third diffusion region having a second type of dopant and in contact with the sub-fin. The first type of dopant is one of p-type or n-type dopant, and where the second type of dopant is the other of the p-type or n-type dopant. A first body of semiconductor material extends from the second diffusion region to the third diffusion region, and a second body of semiconductor material extends from the first diffusion region towards the second diffusion region. The first diffusion region is a tap diffusion region contacting the sub-fin. In an example, the first diffusion region facilitates formation of a diode for electrostatic discharge (ESD) protection of the integrated circuit structure.
    Type: Application
    Filed: September 13, 2022
    Publication date: March 14, 2024
    Inventors: Nicholas A. Thomson, Ayan Kar, Kalyan C. Kolluru, Mauro J. Kobrinksy, Benjamin Orr
  • Publication number: 20240088134
    Abstract: An integrated circuit structure includes laterally adjacent first and second devices. The first device has (i) a first diffusion region, (ii) a first body including semiconductor material extending laterally from the first diffusion region, and (iii) a first gate structure on the first body. The first diffusion region has a first lower section that extends below a lower surface of the first gate structure, the first lower section having a first height. The second device has (i) a second diffusion region, (ii) a second body including semiconductor material extending laterally from the second diffusion region, and (iii) a second gate structure on the second body. The second diffusion region has a second lower section that extends below a lower surface of the second gate structure, the second lower section having a second height. In an example, the first height is at least 2 nanometers greater than the second height.
    Type: Application
    Filed: September 13, 2022
    Publication date: March 14, 2024
    Applicant: Intel Corporation
    Inventors: Nicholas A. Thomson, Ayan Kar, Kalyan C. Kolluru, Mauro J. Kobrinsky
  • Publication number: 20240088131
    Abstract: An integrated circuit structure includes a sub-fin having at least a portion that is doped with a first type of dopant, and a diffusion region doped with a second type of dopant. The diffusion region is in contact with the sub-fin and extends upward from the sub-fin. The first type of dopant is one of a p-type or an n-type dopant, and the second type of dopant is the other of the p-type or the n-type dopant. In an example, a first conductive contact is above and on the diffusion region, and a second conductive contact is in contact with the portion of the sub-fin. In an example, the diffusion region is at least a part of one of an anode or a cathode of a diode, and the portion of the sub-fin is at least a part of the other of the anode or the cathode of the diode.
    Type: Application
    Filed: September 13, 2022
    Publication date: March 14, 2024
    Applicant: Intel Corporation
    Inventors: Nicholas A. Thomson, Kalyan C. Kolluru, Ayan Kar, Mauro J. Kobrinsky
  • Publication number: 20240088136
    Abstract: An integrated circuit structure includes a sub-fin, a source region in contact with a first portion of the sub-fin, and a drain region in contact with a second portion of the sub-fin. A body including semiconductor material is above the sub-fin, where the body extends laterally between the source region and the drain region. A gate structure is on the body and includes (i) a gate electrode, and (ii) a gate dielectric between the gate electrode and the body. In an example, a first distance between the drain region and the gate electrode is at least two times a second distance between the source region and the gate electrode, where the first and second distances are measured in a same horizontal plane that runs in a direction parallel to the body. In an example, the body is a nanoribbon, a nanosheet, a nanowire, or a fin.
    Type: Application
    Filed: September 13, 2022
    Publication date: March 14, 2024
    Applicant: Intel Corporation
    Inventors: Ayan Kar, Nicholas A. Thomson, Kalyan C. Kolluru, Benjamin Orr
  • Publication number: 20230420578
    Abstract: A varactor device includes a support structure, an electrically conductive layer at the backside of the support structure, two semiconductor structures including doped semiconductor materials, two contact structures, and a semiconductor region. Each contract structure is electrically conductive and is connected to a different one of the semiconductor structures A contract structure couples the corresponding semiconductor structure to the electrically conductive layer. The semiconductor region is between the two semiconductor structures and can be connected to the two semiconductor structures. The semiconductor region may include non-planar semiconductor structures coupled with a gate. The gate may be coupled to another electrically conductive layer at the frontside of the support structure. The varactor device may further include a pair of additional semiconductor regions that are electrically insulated from each other.
    Type: Application
    Filed: June 24, 2022
    Publication date: December 28, 2023
    Applicant: Intel Corporation
    Inventors: Ayan Kar, Kalyan C. Kolluru, Nicholas A. Thomson, Vijaya Bhaskara Neeli, Said Rami, Saurabh Morarka, Karthik Krishaswamy, Mauro J. Kobrinsky
  • Publication number: 20230420443
    Abstract: Integrated circuit (IC) devices with diodes formed in a subfin between a support structure of an IC device and one or more nanoribbon stacks are disclosed. To alleviate challenges of limited semiconductor cross-section provided by the subfin, etch depths in the subfin (i.e., depths of recesses in the subfin formed as a part of forming the diodes) are selectively optimized and varied. Deeper recesses are made in subfin portions at which diode terminals (e.g., anodes and cathodes) are formed, to increase the semiconductor cross-section in those portions, thus providing improved subfin contacts. Shallower recesses (or no recesses) are made in subfin portion between the diode terminals, to increase subfin retention. Thus, subfin diodes may be provided in a manner that enables improved diode conductance and/or improved current carrying capabilities while advantageously using substantially the same etch processes as those used for forming nanoribbon-based transistors elsewhere in the IC device.
    Type: Application
    Filed: June 27, 2022
    Publication date: December 28, 2023
    Inventors: Nicholas A. Thomson, Ayan Kar, Kalyan C. Kolluru, Benjamin John Orr, Chu-Hsin Liang, Biswajeet Guha, Saptarshi Mandal, Brian Greene, Sameer Jayanta Joglekar, Chung-Hsun Lin, Mauro J. Kobrinsky
  • Publication number: 20230402449
    Abstract: Disclosed herein are integrated circuit (IC) structures including backside vias, as well as related methods and devices. In some embodiments, an IC structure may include: a device layer, wherein the device layer includes a plurality of active devices; a first metallization layer over the device layer, wherein the first metallization layer includes a first conductive pathway in conductive contact with at least one of the active devices in the device layer; a second metallization layer under the device layer, wherein the second metallization layer includes a second conductive pathway; and a conductive via in the device layer, wherein the conductive via is in conductive contact with at least one of the active devices in the device layer and also in conductive contact with the second conductive pathway.
    Type: Application
    Filed: August 29, 2023
    Publication date: December 14, 2023
    Applicant: Intel Corporation
    Inventors: Nicholas A. Thomson, Kalyan C. Kolluru, Adam Clay Faust, Frank Patrick O'Mahony, Ayan Kar, Rui Ma
  • Patent number: 11791331
    Abstract: Disclosed herein are integrated circuit (IC) structures including backside vias, as well as related methods and devices. In some embodiments, an IC structure may include: a device layer, wherein the device layer includes a plurality of active devices; a first metallization layer over the device layer, wherein the first metallization layer includes a first conductive pathway in conductive contact with at least one of the active devices in the device layer; a second metallization layer under the device layer, wherein the second metallization layer includes a second conductive pathway; and a conductive via in the device layer, wherein the conductive via is in conductive contact with at least one of the active devices in the device layer and also in conductive contact with the second conductive pathway.
    Type: Grant
    Filed: November 15, 2021
    Date of Patent: October 17, 2023
    Assignee: Intel Corporation
    Inventors: Nicholas A. Thomson, Kalyan C. Kolluru, Adam Clay Faust, Frank Patrick O'Mahony, Ayan Kar, Rui Ma
  • Publication number: 20230087444
    Abstract: Integrated circuits including lateral diodes. In an example, diodes are formed with laterally neighboring source and drain regions (diffusion regions) configured with different polarity epitaxial growths (e.g., p-type and n-type), to provide an anode and cathode of the diode. In some such cases, dopants may be used in the channel region to create or otherwise enhance a PN or PIN junction between the diffusion regions and the semiconductor material of a channel region. The channel region can be, for instance, one or more nanoribbons or other such semiconductor bodies that extend between the oppositely-doped diffusion regions. In some cases, nanoribbons making up the channel region are left unreleased, thereby preserving greater volume through which diode current can flow. Other features include skipped epitaxial regions, elongated gate structures, using isolation structures in place of gate structures, and/or sub-fin conduction paths that are supplemental or alternative to a channel-based conduction path.
    Type: Application
    Filed: September 22, 2021
    Publication date: March 23, 2023
    Applicant: INTEL CORPORATION
    Inventors: Nicholas A. Thomson, Ayan Kar, Benjamin Orr, Kalyan C. Kolluru, Nathan D. Jack, Patrick Morrow, Cheng-Ying Huang, Charles C. Kuo
  • Publication number: 20230088578
    Abstract: Integrated circuits including lateral diodes. In an example, diodes are formed with laterally neighboring source and drain regions (diffusion regions) configured with different polarity epitaxial growths (e.g., p-type and n-type), to provide an anode and cathode of the diode. In some such cases, dopants may be used in the channel region to create or otherwise enhance a PN or PIN junction between the diffusion regions and the semiconductor material of a channel region. The channel region can be, for instance, one or more nanoribbons or other such semiconductor bodies that extend between the oppositely-doped diffusion regions. In some cases, nanoribbons making up the channel region are left unreleased, thereby preserving greater volume through which diode current can flow. Other features include skipped epitaxial regions, elongated gate structures, using isolation structures in place of gate structures, and/or sub-fin conduction paths that are supplemental or alternative to a channel-based conduction paths.
    Type: Application
    Filed: September 22, 2021
    Publication date: March 23, 2023
    Applicant: INTEL CORPORATION
    Inventors: Nicholas A. Thomson, Ayan Kar, Benjamin Orr, Kalyan C. Kolluru, Nathan D. Jack, Patrick Morrow, Cheng-Ying Huang, Charles C. Kuo
  • Publication number: 20230089395
    Abstract: Integrated circuits including vertical diodes. In an example, a first transistor is above a second transistor. The first transistor includes a first semiconductor body extending laterally from a first source or drain region. The first source or drain region includes one of a p-type dopant or an n-type dopant. The second transistor includes a second semiconductor body extending laterally from a second source or drain region. The second source or drain region includes the other of the p-type dopant or the n-type dopant. The first source or drain region and second source or drain region are at least part of a diode structure, which may have a PN junction (e.g., first and second source/drain regions are merged) or a PIN junction (e.g., first and second source/drain regions are separated by an intrinsic semiconductor layer, or a dielectric layer and the first and second semiconductor bodies are part of the junction).
    Type: Application
    Filed: September 22, 2021
    Publication date: March 23, 2023
    Applicant: INTEL CORPORATION
    Inventors: Benjamin Orr, Nicholas A. Thomson, Ayan Kar, Nathan D. Jack, Kalyan C. Kolluru, Patrick Morrow, Cheng-Ying Huang, Charles C. Kuo
  • Publication number: 20220406773
    Abstract: Integrated circuit structures having backside self-aligned conductive pass-through contacts, and methods of fabricating integrated circuit structures having backside self-aligned conductive pass-through contacts, are described. For example, an integrated circuit structure includes a first sub-fin structure over a first stack of nanowires. A second sub-fin structure is over a second stack of nanowires. A dummy gate electrode is laterally between the first stack of nanowires and the second stack of nanowires. A conductive pass-through contact is laterally between the first stack of nanowires and the second stack of nanowires. The conductive pass-through contact is on and in contact with the dummy gate electrode.
    Type: Application
    Filed: June 21, 2021
    Publication date: December 22, 2022
    Inventors: Leonard P. GULER, Sukru YEMENICIOGLU, Kalyan C. KOLLURU, Mauro J. KOBRINSKY, Charles H. WALLACE, Tahir GHANI
  • Publication number: 20220399277
    Abstract: An Integrated Circuit (IC), comprising a first conductive trace on a first die, a second conductive trace on a second die, and a conductive pathway electrically coupling the first conductive trace with the second conductive trace. The second die is coupled to the first die with interconnects. The conductive pathway comprises a portion of the interconnects located proximate to a periphery of a region in the first die through which the first conductive trace is not routable. In some embodiments, the conductive pathway reroutes electrical connections away from the region. The region comprises a high congestion zone having high routing density in some embodiments. In other embodiments, the region comprises a “keep-out” zone.
    Type: Application
    Filed: June 11, 2021
    Publication date: December 15, 2022
    Applicant: INTEL CORPORATION
    Inventors: Adel A. Elsherbini, Scott E. Siers, Sathya Narasimman Tiagaraj, Gerald S. Pasdast, Zhiguo Qian, Kalyan C. Kolluru, Vivek Kumar Rajan, Shawna M. Liff, Johanna M. Swan
  • Publication number: 20220077140
    Abstract: Disclosed herein are integrated circuit (IC) structures including backside vias, as well as related methods and devices. In some embodiments, an IC structure may include: a device layer, wherein the device layer includes a plurality of active devices; a first metallization layer over the device layer, wherein the first metallization layer includes a first conductive pathway in conductive contact with at least one of the active devices in the device layer; a second metallization layer under the device layer, wherein the second metallization layer includes a second conductive pathway; and a conductive via in the device layer, wherein the conductive via is in conductive contact with at least one of the active devices in the device layer and also in conductive contact with the second conductive pathway.
    Type: Application
    Filed: November 15, 2021
    Publication date: March 10, 2022
    Applicant: Intel Corporation
    Inventors: Nicholas A. Thomson, Kalyan C. Kolluru, Adam Clay Faust, Frank Patrick O'Mahony, Ayan Kar, Rui Ma
  • Patent number: 11145732
    Abstract: Disclosed herein are transistor arrangements of field-effect transistors with dual thickness gate dielectrics. An example transistor arrangement includes a semiconductor channel material, a source region and a drain region, provided in the semiconductor material, and a gate stack provided over a portion of the semiconductor material that is between the source region and the drain region. The gate stack has a thinner gate dielectric in a portion that is closer to the source region and a thicker gate dielectric in a portion that is closer to the drain region, which may effectively realize tunable ballast resistance integrated with the transistor arrangement and may help increase the breakdown voltage and/or decrease the gate leakage of the transistor.
    Type: Grant
    Filed: November 30, 2019
    Date of Patent: October 12, 2021
    Assignee: Intel Corporation
    Inventors: Ayan Kar, Kalyan C. Kolluru, Nicholas A. Thomson, Mark Armstrong, Sameer Jayanta Joglekar, Rui Ma, Sayan Saha, Hyuk Ju Ryu, Akm A. Ahsan
  • Publication number: 20210202472
    Abstract: Disclosed herein are integrated circuit (IC) structures including backside vias, as well as related methods and devices. In some embodiments, an IC structure may include: a device layer, wherein the device layer includes a plurality of active devices; a first metallization layer over the device layer, wherein the first metallization layer includes a first conductive pathway in conductive contact with at least one of the active devices in the device layer; a second metallization layer under the device layer, wherein the second metallization layer includes a second conductive pathway; and a conductive via in the device layer, wherein the conductive via is in conductive contact with at least one of the active devices in the device layer and also in conductive contact with the second conductive pathway.
    Type: Application
    Filed: December 27, 2019
    Publication date: July 1, 2021
    Applicant: Intel Corporation
    Inventors: Nicholas A. Thomson, Kalyan C. Kolluru, Adam Clay Faust, Frank Patrick O'Mahony, Ayan Kar, Rui Ma
  • Publication number: 20210167180
    Abstract: Disclosed herein are transistor arrangements of field-effect transistors with dual thickness gate dielectrics. An example transistor arrangement includes a semiconductor channel material, a source region and a drain region, provided in the semiconductor material, and a gate stack provided over a portion of the semiconductor material that is between the source region and the drain region. The gate stack has a thinner gate dielectric in a portion that is closer to the source region and a thicker gate dielectric in a portion that is closer to the drain region, which may effectively realize tunable ballast resistance integrated with the transistor arrangement and may help increase the breakdown voltage and/or decrease the gate leakage of the transistor.
    Type: Application
    Filed: November 30, 2019
    Publication date: June 3, 2021
    Applicant: Intel Corporation
    Inventors: Ayan Kar, Kalyan C. Kolluru, Nicholas A. Thomson, Mark Armstrong, Sameer Jayanta Joglekar, Rui Ma, Sayan Saha, Hyuk Ju Ryu, Akm A. Ahsan
  • Patent number: 10249597
    Abstract: Systems, methods, and apparatuses for implementing die recovery in Two-Level Memory (2LM) stacked die subsystems are described. A stacked semiconductor package includes a processor functional silicon die at a first layer of the stacked semiconductor package; one or more memory dies forming a corresponding one or more memory layers of the stacked semiconductor package; a plurality of Through Silicon Vias (TSV s) formed through the one or more memory dies; a plurality of physical memory interfaces electrically interfacing the one or more memory dies to the processor functional silicon die at the first layer through the memory layers via the plurality of TSVs; and a redundant physical memory interface formed by a redundant TSV traversing through the memory layers to the processor functional silicon die at the first layer through which to reroute a memory signal path from a defective physical memory interface at a defective TSV to a functional signal path traversing the redundant TSV.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: April 2, 2019
    Assignee: Intel Corporation
    Inventors: Lakshminarayana Pappu, Kalyan C. Kolluru, Pete D. Vogt, Christopher J. Nelson, Amande B. Trang, Uddalak Bhattacharya
  • Publication number: 20180096971
    Abstract: In accordance with disclosed embodiments, there are provided systems, methods, and apparatuses for implementing die recovery in Two-Level Memory (2LM) stacked die subsystems.
    Type: Application
    Filed: September 30, 2016
    Publication date: April 5, 2018
    Inventors: LAKSHMINARAYANA PAPPU, KALYAN C. KOLLURU, PETE D. VOGT, CHRISTOPHER J. NELSON, AMANDE B. TRANG, UDDALAK BHATTACHARYA