Patents by Inventor Kam Wah Leong

Kam Wah Leong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12169315
    Abstract: An apparatus includes an optoelectronic component mounted to a PCB substrate. A transmissive adhesive is disposed directly on the optoelectronic component and is transmissive to light of a wavelength sensed by, or emitted by, the optoelectronic component. The apparatus includes an optical filter disposed directly on the transmissive adhesive. An epoxy laterally surrounds and is in contact with side surfaces of the transmissive adhesive and the optical filter. The epoxy is non-transmissive to light of a wavelength sensed by, or emitted by, the optoelectronic component. In some cases, the epoxy defines a recess directly over the optical filter to accommodate an optical component, such as an optical diffuser. Methods of fabricating the modules are disclosed as well.
    Type: Grant
    Filed: February 27, 2019
    Date of Patent: December 17, 2024
    Assignee: ams Sensors Singapore Pte. Ltd.
    Inventors: Qi Chuan Yu, Hartmut Rudmann, Ji Wang, Kam Wah Leong, Kim Lung Ng
  • Patent number: 12109771
    Abstract: A method of making optical diffuser elements (20) includes providing a substrate (100) composed of a polymer material and having openings (102) therein. An optical diffuser material (110) is dispensed into the openings (102), and the optical diffuser material (110) is hardened to form a sheet (200) composed of regions of the optical diffuser material (110) surrounded laterally by the polymer material. The method includes separating the sheet (200) into multiple optical diffuser elements (30) that retain their mechanical stability and optical properties when subjected to a reflow process.
    Type: Grant
    Filed: February 20, 2020
    Date of Patent: October 8, 2024
    Assignee: ams Sensors Singapore Pte. Ltd.
    Inventors: Ji Wang, Kam Wah Leong, QiChuan Yu, Yeu Woon Chan
  • Patent number: 11996505
    Abstract: Manufacturing optoelectronic modules includes supporting a printed circuit board substrate (27) on a first vacuum injection tool (24). The printed circuit board substrate (27) has at least one optoelectronic component mounted thereon and has a solder mask (40) on a surface (46) facing away from the first vacuum injection tool (24). The method includes causing the first vacuum injection tool (24) and a second vacuum injection tool (22) to be brought closer to one another such that a surface (46) of the second vacuum injection tool (22) is in contact with the solder mask (40). Subsequently, a first epoxy (100, 20) is provided, using a vacuum injection technique, in spaces (104) between the upper tool (22) and the solder mask (40).
    Type: Grant
    Filed: November 27, 2019
    Date of Patent: May 28, 2024
    Assignee: AMS Sensors Singapore PTE. LTD.
    Inventors: Ji Wang, Kam Wah Leong, QiChuan Yu, Simon Gubser, Yoong Kheng Teoh
  • Publication number: 20240096855
    Abstract: A method of wafer-level manufacturing of an optical package (285) is disclosed. The method comprises forming an apertured substrate (170; 405) by a process of vacuum injection molding, each aperture (175A; 175B) in the apertured substrate configured to support an optical element (225; 420; 425). The method also comprises coupling the apertured substrate to a further substrate (255) comprising optical devices (260, 265) aligned with the apertures in the apertured substrate. Also disclosed is optical package (285, 600) formed according to the method and an apparatus, such as a smartphone, comprising the optical package.
    Type: Application
    Filed: December 8, 2021
    Publication date: March 21, 2024
    Applicant: ams-OSRAM Asia Pacific Pte. Ltd.
    Inventors: Zhen Kai NAM, Qi Chuan YU, Kam Wah LEONG, Yeu Woon CHAN, Royce VIRINTHORN, Sundar Raman GNANA SAMBANDAM, Zhang Xin SUN
  • Publication number: 20230286233
    Abstract: A method of producing optical modules comprising transferring liquid polymer to a lens mold array by dipping an array of fingers of a transfer device into a liquid polymer, bringing the array of fingers into proximity with recesses of the lens mold array so that the liquid polymer is received in the recesses, then separating the array of fingers and the lens mold array so that liquid polymer is retained in the recesses, and forming lenses on optical devices by bringing the lens mold array into proximity with the array of optical devices so that the liquid polymer contacts a surface of the optical devices, and curing the liquid polymer to form the lenses on the optical devices.
    Type: Application
    Filed: September 23, 2021
    Publication date: September 14, 2023
    Inventors: QiChuan Yu, Kam Wah Leong, Kyaw Oo Aung, Yoong Kheng Teoh, Sung Hoe Hng
  • Publication number: 20230226721
    Abstract: A method for producing a plurality of optical prisms comprises: providing at least one manufacturing intermediate; and dividing the at least one manufacturing intermediate into a plurality of individual triangular prisms. The manufacturing intermediate comprises a main body in the form of a triangular prism having three rectangular surfaces and two triangular surfaces. The main body is formed from a light-transmitting material. A layer of opaque material is provided on two of the three rectangular surfaces of the main body, the layer of opaque material having a plurality of axially spaced apertures on each of the two of the three rectangular surfaces, each one of the apertures on one of the two surfaces being disposed at substantially the same axial position as one of the apertures on the other one of the two surfaces.
    Type: Application
    Filed: May 11, 2021
    Publication date: July 20, 2023
    Inventors: QiChuan Yu, Sai Mun Chan, Ilias Bosdas, Kam Wah Leong, Quoc Bao Pham, Mark Dranreb Ulpindo
  • Publication number: 20230005896
    Abstract: A method of fabricating one or more optoelectronic devices each comprising at least one passive optical component. The method comprises providing a first carrier, depositing a soluble adhesive onto a surface of the first carrier, and placing a plurality of integrated circuit devices onto said surface and curing the soluble adhesive to fix the integrated circuit devices to the carrier.
    Type: Application
    Filed: April 29, 2021
    Publication date: January 5, 2023
    Inventors: Kam Wah Leong, QiChuan Yu, Yoong Kheng Teoh, Sung Hoe Hng, Kyaw Oo Aung
  • Publication number: 20220229362
    Abstract: A method of manufacturing a master for use in a wafer-scale replication process is disclosed. The method comprises at least one step of forming a layer of photoresist on a substrate and exposing the layer of photoresist to a radiation pattern to form at least one patterned layer. The method also comprises a step of developing the at least one patterned layer to provide one or more structures defining the master. In an embodiment, the at least one step of forming the layer of photoresist comprises a process of dry film lamination.
    Type: Application
    Filed: May 28, 2020
    Publication date: July 21, 2022
    Inventors: Ji Wang, Kam Wah Leong, QiChuan Yu, Sundar Raman Gnana Sambandam
  • Publication number: 20220088895
    Abstract: A method of making optical diffuser elements (20) includes providing a substrate (100) composed of a polymer material and having openings (102) therein. An optical diffuser material (110) is dispensed into the openings (102), and the optical diffuser material (110) is hardened to form a sheet (200) composed of regions of the optical diffuser material (110) surrounded laterally by the polymer material. The method includes separating the sheet (200) into multiple optical diffuser elements (30) that retain their mechanical stability and optical properties when subjected to a reflow process.
    Type: Application
    Filed: February 20, 2020
    Publication date: March 24, 2022
    Inventors: Ji WANG, Kam Wah LEONG, QiChuan YU, Yeu Woon CHAN
  • Publication number: 20220045247
    Abstract: An apparatus includes an optoelectronic module including a light emitting die and a light receiver die mounted on a PCB substrate. The optoelectronic module further includes an optical element on the light emitting die and an optical element on the light receiver die, the optical elements being composed of a first epoxy. A second epoxy laterally surrounds and is in contact with respective side surfaces of the light emitting die, the light receiver die and the optical elements, wherein the second epoxy provides an optical barrier between the light emitting die and the light receiver die. A method of manufacturing such modules is described as well.
    Type: Application
    Filed: December 5, 2019
    Publication date: February 10, 2022
    Inventors: Ji Wang, Qi Chuan Yu, Kam Wah Leong, Hartmut Rudmann
  • Publication number: 20220020901
    Abstract: Manufacturing optoelectronic modules includes supporting a printed circuit board substrate (27) on a first vacuum injection tool (24). The printed circuit board substrate (27) has at least one optoelectronic component mounted thereon and has a solder mask (40) on a surface (46) facing away from the first vacuum injection tool (24). The method includes causing the first vacuum injection tool (24) and a second vacuum injection tool (22) to be brought closer to one another such that a surface (46) of the second vacuum injection tool (22) is in contact with the solder mask (40). Subsequently, a first epoxy (100, 20) is provided, using a vacuum injection technique, in spaces (104) between the upper tool (22) and the solder mask (40).
    Type: Application
    Filed: November 27, 2019
    Publication date: January 20, 2022
    Inventors: Ji Wang, Kam Wah Leong, QiChuan Yu, Simon Gubser, Yoong Kheng Teoh
  • Publication number: 20210041650
    Abstract: An apparatus includes an optoelectronic component mounted to a PCB substrate. A transmissive adhesive is disposed directly on the optoelectronic component and is transmissive to light of a wavelength sensed by, or emitted by, the optoelectronic component. The apparatus includes an optical filter disposed directly on the transmissive adhesive. An epoxy laterally surrounds and is in contact with side surfaces of the transmissive adhesive and the optical filter. The epoxy is non-transmissive to light of a wavelength sensed by, or emitted by, the optoelectronic component. In some cases, the epoxy defines a recess directly over the optical filter to accommodate an optical component, such as an optical diffuser. Methods of fabricating the modules are disclosed as well.
    Type: Application
    Filed: February 27, 2019
    Publication date: February 11, 2021
    Applicant: ams Sensors Singapore Pte. Ltd.
    Inventors: Qi Chuan YU, Hartmut RUDMANN, Ji WANG, Kam Wah LEONG, Kim Lung NG
  • Patent number: 10877239
    Abstract: Optical stack assemblies and fabrication techniques thereof. The optical stack assembly includes first and second sub-assemblies, each of which include a substrate and a sub-structure fixed to the respective substrate. Each sub-structures includes a respective first edge feature and a respective second edge feature that project away from the substrate of that sub-structure, each second edge feature being disposed laterally closer to an outer periphery of the respective sub-structure than the first edge feature of the same sub-structure. The first edge feature of the first sub-structure is in direct contact with the first edge feature of the second sub¬structure, while the second edge feature of the first sub-structure and the second edge feature of the second sub-structure are attached to one another by adhesive. At least one of the first or second sub-structures includes an optical element on a same side of the sub-structure as the first and second edge features of that sub-structure.
    Type: Grant
    Filed: November 4, 2016
    Date of Patent: December 29, 2020
    Assignee: ams Sensors Singapore Pte. Ltd.
    Inventors: Ji Wang, Kam Wah Leong, Bojan Tesanovic, Qichuan Yu, Tobias Senn, Nicola Spring, Robert Lenart
  • Patent number: 10663698
    Abstract: This disclosure describes optical assemblies that can be fabricated, for example, using wafer-level processes. The process can include providing a wafer stack that includes an optics wafer, and molding spacers directly onto the surface of the optics wafer. The spacers can be molded, for example, using a vacuum injection technique such that they adhere to the optics wafer without adhesive.
    Type: Grant
    Filed: August 25, 2016
    Date of Patent: May 26, 2020
    Assignee: ams Sensors Singapore Pte. Ltd.
    Inventors: Qichuan Yu, Kam Wah Leong, Ji Wang
  • Patent number: 10199426
    Abstract: Various optoelectronic modules are described that include an optoelectronic device (e.g., a light emitting or light detecting element) and a transparent cover. Non-transparent material is provided on the sidewalls of the transparent cover, which, in some implementations, can help reduce light leakage from the sides of the transparent cover or can help prevent stray light from entering the module. Fabrication techniques for making the modules also are described.
    Type: Grant
    Filed: December 1, 2017
    Date of Patent: February 5, 2019
    Assignee: Heptagon Micro Optics Pte. Ltd.
    Inventors: Hartmut Rudmann, Simon Gubser, Susanne Westenhöfer, Stephan Heimgartner, Jens Geiger, Sonja Hanselmann, Christoph Friese, Xu Yi, Thng Chong Kim, John A. Vidallon, Ji Wang, Qi Chuan Yu, Kam Wah Leong
  • Patent number: 10186540
    Abstract: Optoelectronic modules include an optoelectronic device and a transparent cover. A non-transparent material is provided on the sidewalls of the transparent cover, which can help reduce light leakage from the sides of the transparent cover or can help reduce stray light from entering the module. The modules can be fabricated, for example, in wafer-level processes. In some implementations, openings such as trenches are formed in a transparent wafer. The trenches then can be filled with a non-transparent material using, for example, a vacuum injection tool. When a wafer-stack including the trench-filled transparent wafer subsequently is separated into individual modules, the result is that each module can include a transparent cover having sidewalls that are covered by the non-transparent material.
    Type: Grant
    Filed: June 18, 2015
    Date of Patent: January 22, 2019
    Assignee: Heptagon Micro Optics Pte. Ltd.
    Inventors: Hartmut Rudmann, Simon Gubser, Susanne Westenhöfer, Stephan Heimgartner, Jens Geiger, Xu Yi, Thng Chong Kim, John A. Vidallon, Ji Wang, Qi Chuan Yu, Kam Wah Leong
  • Publication number: 20180329175
    Abstract: Optical stack assemblies and fabrication techniques thereof. The optical stack assembly includes first and second sub-assemblies, each of which include a substrate and a sub-structure fixed to the respective substrate. Each sub-structures includes a respective first edge feature and a respective second edge feature that project away from the substrate of that sub-structure, each second edge feature being disposed laterally closer to an outer periphery of the respective sub-structure than the first edge feature of the same sub-structure. The first edge feature of the first sub-structure is in direct contact with the first edge feature of the second sub¬structure, while the second edge feature of the first sub-structure and the second edge feature of the second sub-structure are attached to one another by adhesive. At least one of the first or second sub-structures includes an optical element on a same side of the sub-structure as the first and second edge features of that sub-structure.
    Type: Application
    Filed: November 4, 2016
    Publication date: November 15, 2018
    Inventors: Ji Wang, Kam Wah Leong, Bojan Tesanovic, Qichuan Yu, Tobias Senn, Nicola Spring, Robert Lenart
  • Publication number: 20180239116
    Abstract: This disclosure describes optical assemblies that can be fabricated, for example, using wafer-level processes. The process can include providing a wafer stack that includes an optics wafer, and molding spacers directly onto the surface of the optics wafer. The spacers can be molded, for example, using a vacuum injection technique such that they adhere to the optics wafer without adhesive.
    Type: Application
    Filed: August 25, 2016
    Publication date: August 23, 2018
    Inventors: Qichuan Yu, Kam Wah Leong, Ji Wang
  • Publication number: 20180102394
    Abstract: Various optoelectronic modules are described that include an optoelectronic device (e.g., a light emitting or light detecting element) and a transparent cover. Non-transparent material is provided on the sidewalls of the transparent cover, which, in some implementations, can help reduce light leakage from the sides of the transparent cover or can help prevent stray light from entering the module. Fabrication techniques for making the modules also are described.
    Type: Application
    Filed: December 1, 2017
    Publication date: April 12, 2018
    Applicant: Heptagon Micro Optics Pte. Ltd.
    Inventors: Hartmut Rudmann, Simon Gubser, Susanne Westenhöfer, Stephan Heimgartner, Jens Geiger, Sonja Hanselmann, Christoph Friese, Xu Yi, Thng Chong Kim, John A. Vidallon, Ji Wang, Qi Chuan Yu, Kam Wah Leong
  • Patent number: 9859327
    Abstract: Various optoelectronic modules are described that include an optoelectronic device (e.g., a light emitting or light detecting element) and a transparent cover. Non-transparent material is provided on the sidewalls of the transparent cover, which, in some implementations, can help reduce light leakage from the sides of the transparent cover or can help prevent stray light from entering the module. Fabrication techniques for making the modules also are described.
    Type: Grant
    Filed: December 2, 2016
    Date of Patent: January 2, 2018
    Assignee: Heptagon Micro Optics Pte. Ltd.
    Inventors: Hartmut Rudmann, Simon Gubser, Susanne Westenhöfer, Stephan Heimgartner, Jens Geiger, Sonja Hanselmann, Christoph Friese, Xu Yi, Thng Chong Kim, John A. Vidallon, Ji Wang, Qi Chuan Yu, Kam Wah Leong