Patents by Inventor Kamel Abdelmenem Mohamed Eid

Kamel Abdelmenem Mohamed Eid has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10537106
    Abstract: A gold nanoparticle-based assay for the detection of a target molecule, such as Hepatitis C Virus (HCV) RNA in serum samples, that uses positively charged gold nanoparticles (AuNPs) in solution based format. The assay has been tested on 74 serum clinical samples suspected of containing HCV RNA, with 48 and 38 positive and negative samples respectively. The developed assay has a specificity and sensitivity of 96.5% and 92.6% respectively. The results obtained were confirmed by Real-Time PCR, and a concordance of 100% for the negative samples and 89% for the positive samples has been obtained between the Real-Time PCR and the developed AuNPs based assay. Also, a purification method for the HCV RNA has been developed using HCV RNA specific probe conjugated to homemade silica nanoparticles. These silica nanoparticles have been synthesized by modified Stober method. This purification method enhanced the specificity of the developed AuNPs assay.
    Type: Grant
    Filed: August 4, 2016
    Date of Patent: January 21, 2020
    Assignee: AMERICAN UNIVERSITY IN CAIRO (AUC)
    Inventors: Hassan Mohamed El-Said Azzazy, Sherif Mohamed Shawky Abduo, Kamel Abdelmenem Mohamed Eid, Bassem Samy Shenouda Guirgis
  • Publication number: 20190090491
    Abstract: A gold nanoparticle-based assay for the detection of a target molecule, such as Hepatitis C Virus (HCV) RNA in serum samples, that uses positively charged gold nanoparticles (AuNPs) in solution based format. The assay has been tested on 74 serum clinical samples suspected of containing HCV RNA, with 48 and 38 positive and negative samples respectively. The developed assay has a specificity and sensitivity of 96.5% and 92.6% respectively. The results obtained were confirmed by Real-Time PCR, and a concordance of 100% for the negative samples and 89% for the positive samples has been obtained between the Real-Time PCR and the developed AuNPs based assay. Also, a purification method for the HCV RNA has been developed using HCV RNA specific probe conjugated to homemade silica nanoparticles. These silica nanoparticles have been synthesized by modified Stober method. This purification method enhanced the specificity of the developed AuNPs assay.
    Type: Application
    Filed: August 4, 2016
    Publication date: March 28, 2019
    Applicant: AMERICAN UNIVERSITY IN CAIRO (AUC)
    Inventors: Hassan Mohamed El-Said AZZAZY, Sherif Mohamed SHAWKY ABDUO, Kamel Abdelmenem Mohamed EID, Bassem Samy Shenouda GUIRGIS
  • Publication number: 20150017258
    Abstract: A gold nanoparticle-based assay for the detection of a target molecule, such as Hepatitis C Virus (HCV) RNA in serum samples, that uses positively charged gold nanoparticles (AuNPs) in solution based format. The assay has been tested on 74 serum clinical samples suspected of containing HCV RNA, with 48 and 38 positive and negative samples respectively. The developed assay has a specificity and sensitivity of 96.5% and 92.6% respectively. The results obtained were confirmed by Real-Time PCR, and a concordance of 100% for the negative samples and 89% for the positive samples has been obtained between the Real-Time PCR and the developed AuNPs based assay. Also, a purification method for the HCV RNA has been developed using HCV RNA specific probe conjugated to homemade silica nanoparticles. These silica nanoparticles have been synthesized by modified Stober method. This purification method enhanced the specificity of the developed AuNPs assay.
    Type: Application
    Filed: January 31, 2013
    Publication date: January 15, 2015
    Applicant: AMERICAN UNIVERSITY OF CAIRO (AUC)
    Inventors: Hassan Mohamed El-Said Azzazy, Sherif Mohamed Shawky Abduo, Kamel Abdelmenem Mohamed Eid, Bassem Samy Shenouda Guirgis