Patents by Inventor Kamel Salama

Kamel Salama has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8237526
    Abstract: Apparatus for inductive braking of a projectile are disclosed. Embodiments include a receiver that has a unidirectional conductor having a closed conductive pathway that encircles a passageway for a moving projectile. The unidirectional conductor permits current to flow through it in substantially only one direction around the passageway. As the projectile and its associated magnetic field move past the unidirectional conductor, the moving magnetic field induces a current flow through the closed conductive pathway, which in turn generates a magnetic field behind the projectile having the same polarity as the projectile's field. The two fields attract one another, which both exerts a braking force on the projectile and tends to align the two fields. Alignment of these fields centers the projectile away from the passageway wall.
    Type: Grant
    Filed: June 9, 2009
    Date of Patent: August 7, 2012
    Assignee: Sierra Lobo, Inc.
    Inventors: Philip Travis Putman, Kamel Salama
  • Patent number: 7830047
    Abstract: An electrically powered launcher is disclosed that can accelerate small payloads to orbital velocities. The invention uses a novel geometry to overcome limitations of other design, and allows full exploitation of existing superconducting materials.
    Type: Grant
    Filed: September 24, 2008
    Date of Patent: November 9, 2010
    Assignee: The University of Houston System
    Inventors: Phil Putman, Kamel Salama
  • Publication number: 20090302982
    Abstract: Apparatus for inductive braking of a projectile are disclosed. Embodiments include a receiver that has a unidirectional conductor having a closed conductive pathway that encircles a passageway for a moving projectile. The unidirectional conductor permits current to flow through it in substantially only one direction around the passageway. As the projectile and its associated magnetic field move past the unidirectional conductor, the moving magnetic field induces a current flow through the closed conductive pathway, which in turn generates a magnetic field behind the projectile having the same polarity as the projectile's field. The two fields attract one another, which both exerts a braking force on the projectile and tends to align the two fields. Alignment of these fields centers the projectile away from the passageway wall.
    Type: Application
    Filed: June 9, 2009
    Publication date: December 10, 2009
    Applicant: SIERRA LOBO, INC.
    Inventors: Philip Travis Putman, Kamel Salama
  • Publication number: 20090072635
    Abstract: An electrically powered launcher is disclosed that can accelerate small payloads to orbital velocities. The invention uses a novel geometry to overcome limitations of other design, and allows full exploitation of existing superconducting materials.
    Type: Application
    Filed: September 24, 2008
    Publication date: March 19, 2009
    Inventors: Phil Putman, Kamel Salama
  • Patent number: 7459807
    Abstract: An electrically powered launcher is disclosed that can accelerate small payloads to orbital velocities. The invention uses a novel geometry to overcome limitations of other design, and allows full exploitation of existing superconducting materials.
    Type: Grant
    Filed: June 9, 2005
    Date of Patent: December 2, 2008
    Assignee: The University of Houston System
    Inventors: Phil Putman, Kamel Salama
  • Patent number: 7213325
    Abstract: A method of manufacturing a Fe-sheathed MgB2 wire includes the steps of: I. Selecting a carbon steel tube with 0.1% to 0.3% carbon; a. Crimping a first end of the tube; b. Selecting a Mg powder at least 99.8% pure, and sized for 325 mesh; c. Selecting a B powder, at least 99.99% pure, and sized for 325 mesh; d. Stoichiometrically mixing the Mg and B powders to form a mixture powder; e. Milling the mixture powder by using high-energy ball mill for 0.5 to 6 hours and using stainless steel mixing balls and vial, wherein the mass ratio of ball to powder is 20:1, to form a milled powder; f. Filling and packing the tube in an argon atmosphere with the milled powder to create a packing density of about 1.5 g/cm3; g. Crimping the second end of the tube to create a powder-filled tube; h. Rolling the powder-filled tube to create the Fe-sheathed MgB2 wire; and i. Annealing the as-rolled wire at 600 to 900° C. for 0.5 to 3 hours at high purity argon environment to create superconducting wire.
    Type: Grant
    Filed: February 3, 2005
    Date of Patent: May 8, 2007
    Assignee: Board of Regents, University of Houston
    Inventors: Kamel Salama, Hui Fang
  • Publication number: 20050285452
    Abstract: An electrically powered launcher is disclosed that can accelerate small payloads to orbital velocities. The invention uses a novel geometry to overcome limitations of other design, and allows full exploitation of existing superconducting materials.
    Type: Application
    Filed: June 9, 2005
    Publication date: December 29, 2005
    Inventors: Phil Putman, Kamel Salama
  • Publication number: 20050170972
    Abstract: A method of manufacturing a Fe-sheathed MgB2 wire includes the steps of: I. Selecting a carbon steel tube with 0.1% to 0.3% carbon; a. Crimping a first end of the tube; b. Selecting a Mg powder at least 99.8% pure, and sized for 325 mesh; c. Selecting a B powder, at least 99.99% pure, and sized for 325 mesh; d. Stoichiometrically mixing the Mg and B powders to form a mixture powder; e. Milling the mixture powder by using high-energy ball mill for 0.5 to 6 hours and using stainless steel mixing balls and vial, wherein the mass ratio of ball to powder is 20:1, to form a milled powder; f. Filling and packing the tube in an argon atmosphere with the milled powder to create a packing density of about 1.5 g/cm3; g. Crimping the second end of the tube to create a powder-filled tube; h. Rolling the powder-filled tube to create the Fe-sheathed MgB2 wire; and i. Annealing the as-rolled wire at 600 to 900° C. for 0.5 to 3 hours at high purity argon environment to create superconducting wire.
    Type: Application
    Filed: February 3, 2005
    Publication date: August 4, 2005
    Applicant: Board of Regents, University of Houston
    Inventors: Kamel Salama, Hui Fang
  • Publication number: 20010011066
    Abstract: The fabrication of superconducting wires and rods having desired and consistent electrical and mechanical properties, in particular those based on Yttrium Barium Copper Oxide (YBCO) and Bismuth Strontium Calcium Copper Oxide (BSCCO), is disclosed. The first fabrication step is to form an extrudable paste by mixing YBCO or BSCCO superconducting powder with a set of organic additives, which include binder, plasticizers lubricant, dispersant, and a solvent. The following additional steps are performed on both YBCO and BSCCO based wires or rods: (i) using a piston extruder to extrude the superconducting wire or rod; (ii) drying the wire or rod to remove the solvent; and (iii) subjecting the wire or rod to a binder burn-out treatment to remove the remaining organic additives. In addition, YBCO wires and rods also require a sintering step, while BSCCO wires and rods also require cold isostatic pressing and heat treatment steps.
    Type: Application
    Filed: January 19, 2001
    Publication date: August 2, 2001
    Applicant: UNIVERSITY OF HOUSTON
    Inventors: Krishnaswamy Ravi-Chandar, Devamanohar Ponnusamy, Kamel Salama
  • Patent number: 6191074
    Abstract: The fabrication of superconducting wires and rods having desired and consistent electrical and mechanical properties, in particular those based on Yttrium Barium Copper Oxide (YBCO) and Bismuth Strontium Calcium Copper Oxide (BSCCO), is disclosed. The first fabrication step is to form an extrudable paste by mixing YBCO or BSCCO superconducting powder with a set of organic additives, which include binder, plasticizer, lubricant, dispersant, and a solvent. The following additional steps are performed on both YBCO and BSCCO based wires or rods: (i) using a piston extruder to extrude the superconducting wire or rod; (ii) drying the wire or rod to remove the solvent; and (iii) subjecting the wire or rod to a binder burn-out treatment to remove the remaining organic additives. In addition, YBCO wires and rods also require a sintering step, while BSCCO wires and rods also require cold isostatic pressing and heat treatment steps.
    Type: Grant
    Filed: April 2, 1997
    Date of Patent: February 20, 2001
    Assignee: University of Houston
    Inventors: Krishnaswamy Ravi-Chandar, Devamanohar Ponnusamy, Kamel Salama
  • Patent number: 5656574
    Abstract: The fabrication of superconducting wires and rods having desired and consistent electrical and mechanical properties, in particular those based on Yttrium Barium Copper Oxide (YBCO) and Bismuth Strontium Calcium Copper Oxide (BSCCO), is disclosed. The first fabrication step is to form an extrudable paste by mixing YBCO or BSCCO superconducting powder with a set of organic additives, which include binder, plasticizer, lubricant, dispersant, and a solvent. The following additional steps are performed on both YBCO and BSCCO based wires or rods: (i) using a piston extruder to extrude the superconducting wire or rod; (ii) drying the wire or rod to remove the solvent; and (iii) subjecting the wire or rod to a binder burn-out treatment to remove the remaining organic additives. In addition, YBCO wires and rods also require a sintering step, while BSCCO wires and rods also require cold isostatic pressing and heat treatment steps.
    Type: Grant
    Filed: January 13, 1995
    Date of Patent: August 12, 1997
    Assignee: University of Houston
    Inventors: Krishnaswamy Ravi-Chandar, Devamanohar Ponnusamy, Kamel Salama
  • Patent number: 5462917
    Abstract: A superconductor material having a current density, J, of from about 30,000 to about 85,000 amps/cm.sup.2 at zero magnetic field and 77.degree. K is disclosed. The 123 superconductor, of the formula L.sub.1 Ba.sub.2 Cu.sub.3 O.sub.6 +.delta. wherein L is preferably yttrium, is capable of entrapping sufficiently high magnetic fields and exhibits a low microwave surface resistance. The process of preparing the superconductor comprises compacting the bulk product, L.sub.1 Ba.sub.2 Cu.sub.3 O, and then sintering the reaction product at a temperature between about 40.degree. C. to about 90.degree. C. below its melting point, i.e., for Y.sub.1 Ba.sub.2 Cu.sub.3 O.sub.6 +.delta. at a temperature of approximately 940.degree. C. The composition is then heated in a preheated chamber maintained at approximately 1090.degree. C. to about 1,200.degree. C. (approximately 1,100.degree. C. for Y.sub.1 Ba.sub.2 Cu.sub.3 O.sub.6 +.delta.
    Type: Grant
    Filed: February 14, 1994
    Date of Patent: October 31, 1995
    Assignee: University of Houston-University Park
    Inventors: Kamel Salama, Venkatakrishnan Selvamanickam
  • Patent number: 5439879
    Abstract: A method of fabricating articles from segments of anisotropically conducting 123 superconductor such that the current transport properties of the article are comparable to those of the individual segments. The segments to be joined are examined to determine the orientation of the ab plane. Contact surfaces are formed where necessary and the segments are brought into contact and the ab planes are brought into parallel alignment. The contacted segments are elevated in temperature and static pressure is applied to accelerate reaction across the interface of the contact surfaces. The so-formed coherent article is then cooled at a controlled rate.
    Type: Grant
    Filed: June 30, 1993
    Date of Patent: August 8, 1995
    Assignee: University of Houston-University Park
    Inventors: Kamel Salama, Venkatakrishnan Selvamanickam
  • Patent number: 5306697
    Abstract: A superconductor material having a current density, J, of from about 30,000 to about 85,000 amps/cm.sup.2 at zero magnetic field and 77.degree. K. is disclosed. The 123 superconductor, of the formula L.sub.1 Ba.sub.2 Cu.sub.3 O.sub.6 +.delta. wherein L is preferably yttrium, is capable of entrapping sufficiently high magnetic fields and exhibits a low microwave surface resistance. The process of preparing the superconductor comprises compacting the bulk product, L.sub.1 Ba.sub.2 Cu.sub.3 O, and then sintering the reaction product at a temperature between about 40.degree. C. to about 90.degree. C. below its melting point, i.e., for Y.sub.1 Ba.sub.2 Cu.sub.3 O.sub.6 +.delta. at a temperature of approximately 940.degree. C. The composition is then heated in a preheated chamber maintained at approximately 1090.degree. C. to about 1,200.degree. C. (approximately 1,100.degree. C. for Y.sub.1 Ba.sub.2 Cu.sub.3 O.sub.6 +.delta.
    Type: Grant
    Filed: August 23, 1991
    Date of Patent: April 26, 1994
    Assignee: University of Houston - University Park
    Inventors: Kamel Salama, Venkatakrishnan Selvamanickam
  • Patent number: 4956336
    Abstract: A superconductor material having a current density, J, of from about 30,000 to about 85,000 amps/cm.sup.2 at zero magnetic field and 77.degree. K. is disclosed. The 123 superconductor is of the formula L.sub.1 Ba.sub.2 Cu.sub.3 O.sub.6 +.delta. wherein L is preferably yttrium. The process comprises compacting the solid state reaction product of L.sub.1 Ba.sub.2 Cu.sub.3 O and then sintering the reaction product at a temperature between about 40.degree. C. to about 90.degree. C. below its melting point, i.e., for Y.sub.1 Ba.sub.2 Cu.sub.3 O.sub.6 +.delta. at a temperature of approximately 940.degree. C. The composition is then heated in a preheated chamber maintained at approximately 1090.degree. C. to about 1,200.degree. C. (approximately 1,100.degree. C. for Y.sub.1 Ba.sub.2 Cu.sub.3 O.sub.6 +.delta.) until it has been decomposed, and is then rapidly cooled to a temperature between about 10.degree. C. to about 30.degree. C. above its melting point, i.e. for Y.sub.1 Ba.sub.2 Cu.sub.3 O.sub.6 +.delta.
    Type: Grant
    Filed: February 10, 1989
    Date of Patent: September 11, 1990
    Assignee: University of Houston - University Park
    Inventors: Kamel Salama, Venkatakrishnan Selvamanickam