Patents by Inventor Kameshwaran Narasimhan
Kameshwaran Narasimhan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 10655597Abstract: A method of forming a structural element for a wind turbine blade includes fixing a plurality of parallel strength rods to a carrier layer to form a preform layer of material, storing the preform layer in a coiled length, then dispensing the preform layer from the coiled length, partially grinding and then cutting across a width of the preform to form a plurality of cut perform layers, and then stacking them and then fixing them together using a liquid bonding resin material.Type: GrantFiled: March 7, 2018Date of Patent: May 19, 2020Assignee: SENVION GMBHInventors: Joel D. Gruhn, Ethan Franklin, Kameshwaran Narasimhan
-
Publication number: 20180274517Abstract: A composite beam for a wind turbine blade includes a preform layer, the preform layer including multiple elongate strength rods arranged longitudinally relative to one another in a single layer, each strength rod being disposed adjacent to and spaced from at least one adjacent strength rod. Each strength rod has a rectangular cross section and includes multiple, substantially straight collimated structural fibers fixed in a solidified matrix resin. The preform layer includes at least one carrier layer to which the multiple strength rods are joined by an adhesive. The carrier layer spaces adjacent strength rods a fixed distance apart to facilitate the flow of liquid bonding resin between adjacent strength rods of the preform layer to its joined carrier layer, the carrier layer being of a permeable material suitable to facilitate the flow of liquid bonding resin through the carrier layer.Type: ApplicationFiled: March 7, 2018Publication date: September 27, 2018Inventors: Joel D. Gruhn, Ethan Franklin, Kameshwaran Narasimhan
-
Patent number: 9945355Abstract: A composite beam for a wind turbine blade includes a preform layer, the preform layer including multiple elongate strength rods arranged longitudinally relative to one another in a single layer, each strength rod being disposed adjacent to and spaced from at least one adjacent strength rod. Each strength rod has a rectangular cross section and includes multiple, substantially straight collimated structural fibers fixed in a solidified matrix resin. The preform layer includes at least one carrier layer to which the multiple strength rods are joined by an adhesive. The carrier layer spaces adjacent strength rods a fixed distance apart to facilitate the flow of liquid bonding resin between adjacent strength rods of the preform layer to its joined carrier layer, the carrier layer being of a permeable material suitable to facilitate the flow of liquid bonding resin through the carrier layer.Type: GrantFiled: February 28, 2016Date of Patent: April 17, 2018Assignee: SENVION GMBHInventors: Joel D. Gruhn, Ethan Franklin, Kameshwaran Narasimhan
-
Patent number: 9810198Abstract: Structural preform layers of multiple rigid unidirectional strength elements or rods are constructed and arranged for use in fabricating load-bearing support structures and reinforcements of wind turbine blades. Individual preform layers include multiple elongate unidirectional strength elements or rods arranged in a single layer along a longitudinal axis of the preform layer. Each preform layer includes one or more fibrous carrier layers to which the multiple strength elements or rods are joined and arranged in the single layer. Each strength element or rod is longitudinally oriented and adjacent to other elements or rods. Individual strength elements or rods include a mass of substantially straight unidirectional structural fibers embedded within a matrix resin such that the elements or rods have a substantially uniform distribution of fibers and high degree of fiber collimation.Type: GrantFiled: June 29, 2016Date of Patent: November 7, 2017Assignee: SENVION GMBHInventors: Joel D. Gruhn, Ethan Franklin, Kameshwaran Narasimhan
-
Publication number: 20160333850Abstract: Structural preform layers of multiple rigid unidirectional strength elements or rods are constructed and arranged for use in fabricating load-bearing support structures and reinforcements of wind turbine blades. Individual preform layers include multiple elongate unidirectional strength elements or rods arranged in a single layer along a longitudinal axis of the preform layer. Each preform layer includes one or more fibrous carrier layers to which the multiple strength elements or rods are joined and arranged in the single layer. Each strength element or rod is longitudinally oriented and adjacent to other elements or rods. Individual strength elements or rods include a mass of substantially straight unidirectional structural fibers embedded within a matrix resin such that the elements or rods have a substantially uniform distribution of fibers and high degree of fiber collimation.Type: ApplicationFiled: June 29, 2016Publication date: November 17, 2016Inventors: Joel D. Gruhn, Ethan Franklin, Kameshwaran Narasimhan
-
Patent number: 9429140Abstract: Structural preform layers of multiple rigid unidirectional strength elements or rods are constructed and arranged for use in fabricating load-bearing support structures and reinforcements of wind turbine blades. Individual preform layers include multiple elongate unidirectional strength elements or rods arranged in a single layer along a longitudinal axis of the preform layer. Each preform layer includes one or more fibrous carrier layers to which the multiple strength elements or rods are joined and arranged in the single layer. Each strength element or rod is longitudinally oriented and adjacent to other elements or rods. Individual strength elements or rods include a mass of substantially straight unidirectional structural fibers embedded within a matrix resin such that the elements or rods have a substantially uniform distribution of fibers and high degree of fiber collimation.Type: GrantFiled: May 21, 2013Date of Patent: August 30, 2016Assignee: SENVION GMBHInventors: Joel D. Gruhn, Ethan Franklin, Kameshwaran Narasimhan
-
Patent number: 9394882Abstract: Structural preform layers of multiple rigid unidirectional strength elements or rods are constructed and arranged for use in fabricating load-bearing support structures and reinforcements of wind turbine blades. Individual preform layers include multiple elongate unidirectional strength elements or rods arranged in a single layer along a longitudinal axis of the preform layer. Each preform layer includes one or more fibrous carrier layers to which the multiple strength elements or rods are joined and arranged in the single layer. Each strength element or rod is longitudinally oriented and adjacent to other elements or rods. Individual strength elements or rods include a mass of substantially straight unidirectional structural fibers embedded within a matrix resin such that the elements or rods have a substantially uniform distribution of fibers and high degree of fiber collimation.Type: GrantFiled: October 31, 2014Date of Patent: July 19, 2016Assignee: SENVION GMBHInventors: Joel D. Gruhn, Ethan Franklin, Kameshwaran Narasimhan
-
Publication number: 20160177921Abstract: A composite beam for a wind turbine blade includes a preform layer, the preform layer including multiple elongate strength rods arranged longitudinally relative to one another in a single layer, each strength rod being disposed adjacent to and spaced from at least one adjacent strength rod. Each strength rod has a rectangular cross section and includes multiple, substantially straight collimated structural fibers fixed in a solidified matrix resin. The preform layer includes at least one carrier layer to which the multiple strength rods are joined by an adhesive. The carrier layer spaces adjacent strength rods a fixed distance apart to facilitate the flow of liquid bonding resin between adjacent strength rods of the preform layer to its joined carrier layer, the carrier layer being of a permeable material suitable to facilitate the flow of liquid bonding resin through the carrier layer.Type: ApplicationFiled: February 28, 2016Publication date: June 23, 2016Inventors: Joel D. Gruhn, Ethan Franklin, Kameshwaran Narasimhan
-
Publication number: 20150078911Abstract: Structural preform layers of multiple rigid unidirectional strength elements or rods are constructed and arranged for use in fabricating load-bearing support structures and reinforcements of wind turbine blades. Individual preform layers include multiple elongate unidirectional strength elements or rods arranged in a single layer along a longitudinal axis of the preform layer. Each preform layer includes one or more fibrous carrier layers to which the multiple strength elements or rods are joined and arranged in the single layer. Each strength element or rod is longitudinally oriented and adjacent to other elements or rods. Individual strength elements or rods include a mass of substantially straight unidirectional structural fibers embedded within a matrix resin such that the elements or rods have a substantially uniform distribution of fibers and high degree of fiber collimation.Type: ApplicationFiled: October 31, 2014Publication date: March 19, 2015Inventors: Joel D. Gruhn, Ethan Franklin, Kameshwaran Narasimhan
-
Patent number: 8876483Abstract: Structural preform layers of multiple rigid unidirectional strength elements or rods are constructed and arranged for use in fabricating load-bearing support structures and reinforcements of wind turbine blades. Individual preform layers include multiple elongate unidirectional strength elements or rods arranged in a single layer along a longitudinal axis of the preform layer. Each preform layer includes one or more fibrous carrier layers to which the multiple strength elements or rods are joined and arranged in the single layer. Each strength element or rod is longitudinally oriented and adjacent to other elements or rods. Individual strength elements or rods include a mass of substantially straight unidirectional structural fibers embedded within a matrix resin such that the elements or rods have a substantially uniform distribution of fibers and high degree of fiber collimation.Type: GrantFiled: September 20, 2013Date of Patent: November 4, 2014Assignee: Neptco, Inc.Inventors: Joel D. Gruhn, Ethan Franklin, Kameshwaran Narasimhan
-
Publication number: 20140090781Abstract: Structural preform layers of multiple rigid unidirectional strength elements or rods are constructed and arranged for use in fabricating load-bearing support structures and reinforcements of wind turbine blades. Individual preform layers include multiple elongate unidirectional strength elements or rods arranged in a single layer along a longitudinal axis of the preform layer. Each preform layer includes one or more fibrous carrier layers to which the multiple strength elements or rods are joined and arranged in the single layer. Each strength element or rod is longitudinally oriented and adjacent to other elements or rods. Individual strength elements or rods include a mass of substantially straight unidirectional structural fibers embedded within a matrix resin such that the elements or rods have a substantially uniform distribution of fibers and high degree of fiber collimation.Type: ApplicationFiled: May 21, 2013Publication date: April 3, 2014Applicant: NEPTCO, INC.Inventors: Joel D. Gruhn, Ethan Franklin, Kameshwaran Narasimhan
-
Publication number: 20140023514Abstract: Structural preform layers of multiple rigid unidirectional strength elements or rods are constructed and arranged for use in fabricating load-bearing support structures and reinforcements of wind turbine blades. Individual preform layers include multiple elongate unidirectional strength elements or rods arranged in a single layer along a longitudinal axis of the preform layer. Each preform layer includes one or more fibrous carrier layers to which the multiple strength elements or rods are joined and arranged in the single layer. Each strength element or rod is longitudinally oriented and adjacent to other elements or rods. Individual strength elements or rods include a mass of substantially straight unidirectional structural fibers embedded within a matrix resin such that the elements or rods have a substantially uniform distribution of fibers and high degree of fiber collimation.Type: ApplicationFiled: September 20, 2013Publication date: January 23, 2014Applicant: NEPTCO, INC.Inventors: Joel D. Gruhn, Ethan Franklin, Kameshwaran Narasimhan
-
Patent number: 8540491Abstract: Structural preform layers of multiple rigid unidirectional strength elements or rods are constructed and arranged for use in fabricating load-bearing support structures and reinforcements of wind turbine blades. Individual preform layers include multiple elongate unidirectional strength elements or rods arranged in a single layer along a longitudinal axis of the preform layer. Each preform layer includes one or more fibrous carrier layers to which the multiple strength elements or rods are joined and arranged in the single layer. Each strength element or rod is longitudinally oriented and adjacent to other elements or rods. Individual strength elements or rods include a mass of substantially straight unidirectional structural fibers embedded within a matrix resin such that the elements or rods have a substantially uniform distribution of fibers and high degree of fiber collimation.Type: GrantFiled: August 14, 2012Date of Patent: September 24, 2013Assignee: Neptco, Inc.Inventors: Joel D. Gruhn, Ethan Franklin, Kameshwaran Narasimhan
-
Publication number: 20120308394Abstract: Structural preform layers of multiple rigid unidirectional strength elements or rods are constructed and arranged for use in fabricating load-bearing support structures and reinforcements of wind turbine blades. Individual preform layers include multiple elongate unidirectional strength elements or rods arranged in a single layer along a longitudinal axis of the preform layer. Each preform layer includes one or more fibrous carrier layers to which the multiple strength elements or rods are joined and arranged in the single layer. Each strength element or rod is longitudinally oriented and adjacent to other elements or rods. Individual strength elements or rods include a mass of substantially straight unidirectional structural fibers embedded within a matrix resin such that the elements or rods have a substantially uniform distribution of fibers and high degree of fiber collimation.Type: ApplicationFiled: August 14, 2012Publication date: December 6, 2012Inventors: Joel D. Gruhn, Ethan Franklin, Kameshwaran Narasimhan
-
Publication number: 20110243750Abstract: Structural preform layers of multiple rigid unidirectional strength elements or rods are constructed and arranged for use in fabricating load-bearing support structures and reinforcements of wind turbine blades. Individual preform layers include multiple elongate unidirectional strength elements or rods arranged in a single layer along a longitudinal axis of the preform layer. Each preform layer includes one or more fibrous carrier layers to which the multiple strength elements or rods are joined and arranged in the single layer. Each strength element or rod is longitudinally oriented and adjacent to other elements or rods. Individual strength elements or rods include a mass of substantially straight unidirectional structural fibers embedded within a matrix resin such that the elements or rods have a substantially uniform distribution of fibers and high degree of fiber collimation.Type: ApplicationFiled: January 14, 2011Publication date: October 6, 2011Applicant: Neptco, Inc.Inventors: Joel D. Gruhn, Ethan Franklin, Kameshwaran Narasimhan