Patents by Inventor Kamil BRADLER

Kamil BRADLER has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11972323
    Abstract: An apparatus includes a light source to provide a plurality of input optical modes in a squeezed state. The apparatus also includes a network of interconnected reconfigurable beam splitters (RBSs) configured to perform a unitary transformation of the plurality of input optical modes to generate a plurality of output optical modes. An array of photon counting detectors is in optical communication with the network of interconnected RBSs and configured to measure the number of photons in each mode of the plurality of the output optical modes after the unitary transformation. The apparatus also includes a controller operatively coupled to the light source and the network of interconnected RBSs. The controller is configured to control at least one of the squeezing factor of the squeezed state of light, the angle of the unitary transformation, or the phase of the unitary transformation.
    Type: Grant
    Filed: January 27, 2023
    Date of Patent: April 30, 2024
    Assignee: Xanadu Quantum Technologies Inc.
    Inventors: Kamil Bradler, Daiqin Su, Nathan Killoran, Maria Schuld, Zachary Vernon, Lukas Helt, Blair Morrison, Dylan Mahler
  • Publication number: 20230177374
    Abstract: An apparatus includes a light source to provide a plurality of input optical modes in a squeezed state. The apparatus also includes a network of interconnected reconfigurable beam splitters (RBSs) configured to perform a unitary transformation of the plurality of input optical modes to generate a plurality of output optical modes. An array of photon counting detectors is in optical communication with the network of interconnected RBSs and configured to measure the number of photons in each mode of the plurality of the output optical modes after the unitary transformation. The apparatus also includes a controller operatively coupled to the light source and the network of interconnected RBSs. The controller is configured to control at least one of the squeezing factor of the squeezed state of light, the angle of the unitary transformation, or the phase of the unitary transformation.
    Type: Application
    Filed: January 27, 2023
    Publication date: June 8, 2023
    Applicant: Xanadu Quantum Technologies Inc.
    Inventors: Kamil BRADLER, Daiqin SU, Nathan KILLORAN, Maria SCHULD, Zachary VERNON, Lukas HELT, Blair MORRISON, Dylan MAHLER
  • Publication number: 20230140189
    Abstract: Methods and systems are described herein for determining a solution to a binary optimization problem. In examples, a system described herein comprises a controller and a boson sampler which together implement a hybrid quantum-classical process. Computer-readable media are also described herein.
    Type: Application
    Filed: January 24, 2022
    Publication date: May 4, 2023
    Inventors: Hugo Wallner, Kamil Bradler
  • Publication number: 20230133597
    Abstract: Methods and systems are described herein for determining a solution to a binary optimization problem. In examples, a system described herein comprises a controller and a boson sampler which together implement a hybrid quantum-classical process. Computer-readable media are also described herein.
    Type: Application
    Filed: February 11, 2022
    Publication date: May 4, 2023
    Inventors: Hugo Wallner, Kamil Bradler
  • Patent number: 11593699
    Abstract: An apparatus includes a light source to provide a plurality of input optical modes in a squeezed state. The apparatus also includes a network of interconnected reconfigurable beam splitters (RBSs) configured to perform a unitary transformation of the plurality of input optical modes to generate a plurality of output optical modes. An array of photon counting detectors is in optical communication with the network of interconnected RBSs and configured to measure the number of photons in each mode of the plurality of the output optical modes after the unitary transformation. The apparatus also includes a controller operatively coupled to the light source and the network of interconnected RBSs. The controller is configured to control at least one of the squeezing factor of the squeezed state of light, the angle of the unitary transformation, or the phase of the unitary transformation.
    Type: Grant
    Filed: October 27, 2021
    Date of Patent: February 28, 2023
    Assignee: Xanadu Quantum Technologies Inc.
    Inventors: Kamil Bradler, Daiqin Su, Nathan Killoran, Maria Schuld, Zachary Vernon, Lukas Helt, Blair Morrison, Dylan Mahler
  • Patent number: 11543668
    Abstract: A method includes configuring a first plurality of beamsplitters in a network of interconnected beamsplitters of an optical circuit into a transmissive state. The optical circuit is configured to perform a linear transformation of N input optical modes, where N is a positive integer. The first plurality of beamsplitters is located along a beam path within the optical circuit and traversing a target location. The method also includes configuring a second plurality of beamsplitters in the network of interconnected beamsplitters of the optical circuit into a reflective state to reconfigure the optical circuit into a reconfigured optical circuit. The reconfigured optical circuit is configured to perform a linear transformation on M input optical modes, where M is a positive integer less than N. The second plurality of beamsplitters is located along at least one edge of the optical circuit.
    Type: Grant
    Filed: September 25, 2020
    Date of Patent: January 3, 2023
    Assignee: Xanadu Quantum Technologies Inc.
    Inventors: Kamil Bradler, Ish Dhand
  • Patent number: 11454862
    Abstract: An apparatus includes a plurality of interconnected reconfigurable beam splitters and a plurality of phase shifters collectively configured to define a network of optical devices. The network of optical devices is configured to perform a universal transformation on a plurality of input optical signals via a triangular architecture. The apparatus also includes a first delay line optically coupled to the network of optical devices and configured to send at least one output optical signal from a plurality of output optical signals of the network of optical devices to interact with at least one input optical signal in the plurality of input optical signals within the network of optical devices.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: September 27, 2022
    Assignee: Xanadu Quantum Technologies Inc.
    Inventors: Kamil Bradler, Daiqin Su, Zachary Vernon, Lukas Helt, Ish Dhand
  • Publication number: 20220051124
    Abstract: An apparatus includes a light source to provide a plurality of input optical modes in a squeezed state. The apparatus also includes a network of interconnected reconfigurable beam splitters (RBSs) configured to perform a unitary transformation of the plurality of input optical modes to generate a plurality of output optical modes. An array of photon counting detectors is in optical communication with the network of interconnected RBSs and configured to measure the number of photons in each mode of the plurality of the output optical modes after the unitary transformation. The apparatus also includes a controller operatively coupled to the light source and the network of interconnected RBSs. The controller is configured to control at least one of the squeezing factor of the squeezed state of light, the angle of the unitary transformation, or the phase of the unitary transformation.
    Type: Application
    Filed: October 27, 2021
    Publication date: February 17, 2022
    Applicant: Xanadu Quantum Technologies Inc.
    Inventors: Kamil BRADLER, Daiqin SU, Nathan KILLORAN, Maria SCHULD, Zachary VERNON, Lukas HELT, Blair MORRISON, Dylan MAHLER
  • Publication number: 20210191232
    Abstract: An apparatus includes a plurality of interconnected reconfigurable beam splitters and a plurality of phase shifters collectively configured to define a network of optical devices. The network of optical devices is configured to perform a universal transformation on a plurality of input optical signals via a triangular architecture. The apparatus also includes a first delay line optically coupled to the network of optical devices and configured to send at least one output optical signal from a plurality of output optical signals of the network of optical devices to interact with at least one input optical signal in the plurality of input optical signals within the network of optical devices.
    Type: Application
    Filed: December 18, 2019
    Publication date: June 24, 2021
    Inventors: Kamil BRADLER, Daiqin SU, Zachary VERNON, Lukas HELT, Ish DHAND
  • Publication number: 20210097421
    Abstract: A method includes calculating a plurality of permutation matrices of an input matrix that characterizes a linear transformation of a plurality of input states. The method also includes determining a plurality of settings of an optical circuit based on the plurality of permutation matrices. Each setting in the plurality of settings is associated with an electric power, from a plurality of electric powers, consumed by the optical circuit. The method also includes determining a selected setting of the optical circuit based on the electric power from the plurality of electric powers and consumed by the optical circuit at each setting from the plurality of settings associated with the electric power. The method further includes implementing the selected setting on the optical circuit to perform the linear transformation of the plurality of input states.
    Type: Application
    Filed: September 28, 2020
    Publication date: April 1, 2021
    Inventors: Ish DHAND, Haoyu QI, Leonhard NEUHAUS, Lukas HELT, Kamil BRADLER, Zachary VERNON, Shreya PRASANNA KUMAR
  • Publication number: 20210096384
    Abstract: A method includes configuring a first plurality of beamsplitters in a network of interconnected beamsplitters of an optical circuit into a transmissive state. The optical circuit is configured to perform a linear transformation of N input optical modes, where N is a positive integer. The first plurality of beamsplitters is located along a beam path within the optical circuit and traversing a target location. The method also includes configuring a second plurality of beamsplitters in the network of interconnected beamsplitters of the optical circuit into a reflective state to reconfigure the optical circuit into a reconfigured optical circuit. The reconfigured optical circuit is configured to perform a linear transformation on M input optical modes, where M is a positive integer less than N. The second plurality of beamsplitters is located along at least one edge of the optical circuit.
    Type: Application
    Filed: September 25, 2020
    Publication date: April 1, 2021
    Applicant: Xanadu Quantum Technologies Inc.
    Inventors: Kamil BRADLER, Ish DHAND