Patents by Inventor Kamil Ekinci

Kamil Ekinci has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10913970
    Abstract: A system and method for antibiotic susceptibility testing efficiently determines whether bacteria are alive or have been killed by antibiotic treatment. The antibiotic susceptibility testing device includes at least one reservoir into which a bacteria solution is introduced and a microfluidic channel connected to the reservoir, wherein the cross-sectional size of the microfluidic channel is selected to be comparable to the size of the bacterium to be tested. Furthermore, the electrical resistance or voltage signal across the microchannel is monitored as bacteria swim into and out of the channel. Alternatively, a small population of bacteria can be immobilized in the microchannel. The resistance or voltage signal fluctuates when the bacteria are alive and moving in and out of the channel or wiggling on the microchannel walls. If the bacteria are dead, they have limited motility and the signal fluctuations are significantly smaller.
    Type: Grant
    Filed: January 17, 2019
    Date of Patent: February 9, 2021
    Assignee: TRUSTEES OF BOSTON UNIVERSITY
    Inventors: Kamil Ekinci, Le Li, Chuanhua Duan, Vural Kara, Deborah Stearns-Kurosawa
  • Patent number: 10604784
    Abstract: A system and method for antibiotic susceptibility testing efficiently determines whether bacteria are alive or have been killed by antibiotic treatment. The antibiotic susceptibility testing device includes at least one reservoir into which a bacteria solution is introduced and a microfluidic channel connected to the reservoir, wherein the cross-sectional size of the microfluidic channel is selected to be comparable to the size of the bacterium to be tested. Furthermore, the electrical resistance or voltage signal across the microchannel is monitored as bacteria swim into and out of the channel. Alternatively, a small population of bacteria can be immobilized in the microchannel. The resistance or voltage signal fluctuates when the bacteria are alive and moving in and out of the channel or wiggling on the microchannel walls. If the bacteria are dead, they have limited motility and the signal fluctuations are significantly smaller.
    Type: Grant
    Filed: August 4, 2017
    Date of Patent: March 31, 2020
    Assignee: Trustees of Boston University
    Inventors: Kamil Ekinci, Le Li, Chuanhua Duan, Vural Kara, Deborah Stearns-Kurosawa
  • Publication number: 20190153502
    Abstract: A system and method for antibiotic susceptibility testing efficiently determines whether bacteria are alive or have been killed by antibiotic treatment. The antibiotic susceptibility testing device includes at least one reservoir into which a bacteria solution is introduced and a microfluidic channel connected to the reservoir, wherein the cross-sectional size of the microfluidic channel is selected to be comparable to the size of the bacterium to be tested. Furthermore, the electrical resistance or voltage signal across the microchannel is monitored as bacteria swim into and out of the channel. Alternatively, a small population of bacteria can be immobilized in the microchannel. The resistance or voltage signal fluctuates when the bacteria are alive and moving in and out of the channel or wiggling on the microchannel walls. If the bacteria are dead, they have limited motility and the signal fluctuations are significantly smaller.
    Type: Application
    Filed: January 17, 2019
    Publication date: May 23, 2019
    Applicant: TRUSTEES OF BOSTON UNIVERSITY
    Inventors: Kamil EKINCI, Le LI, Chuanhua DUAN, Vural KARA, Deborah STEARNS-KUROSAWA
  • Patent number: 10214763
    Abstract: A system and method for antibiotic susceptibility testing efficiently determines whether bacteria are alive or have been killed by antibiotic treatment. The antibiotic susceptibility testing device includes at least one reservoir into which a bacteria solution is introduced and a microfluidic channel connected to the reservoir, wherein the cross-sectional size of the microfluidic channel is selected to be comparable to the size of the bacterium to be tested. Furthermore, the electrical resistance or voltage signal across the microchannel is monitored as bacteria swim into and out of the channel. Alternatively, a small population of bacteria can be immobilized in the microchannel. The resistance or voltage signal fluctuates when the bacteria are alive and moving in and out of the channel or wiggling on the microchannel walls. If the bacteria are dead, they have limited motility and the signal fluctuations are significantly smaller.
    Type: Grant
    Filed: February 2, 2018
    Date of Patent: February 26, 2019
    Assignee: TRUSTEES OF BOSTON UNIVERSITY
    Inventors: Kamil Ekinci, Le Li, Chuanhua Duan, Vural Kara, Deborah Stearns-Kurosawa
  • Publication number: 20180155758
    Abstract: A system and method for antibiotic susceptibility testing efficiently determines whether bacteria are alive or have been killed by antibiotic treatment. The antibiotic susceptibility testing device includes at least one reservoir into which a bacteria solution is introduced and a microfluidic channel connected to the reservoir, wherein the cross-sectional size of the microfluidic channel is selected to be comparable to the size of the bacterium to be tested. Furthermore, the electrical resistance or voltage signal across the microchannel is monitored as bacteria swim into and out of the channel. Alternatively, a small population of bacteria can be immobilized in the microchannel. The resistance or voltage signal fluctuates when the bacteria are alive and moving in and out of the channel or wiggling on the microchannel walls. If the bacteria are dead, they have limited motility and the signal fluctuations are significantly smaller.
    Type: Application
    Filed: February 2, 2018
    Publication date: June 7, 2018
    Applicant: TRUSTEES OF BOSTON UNIVERSITY
    Inventors: Kamil Ekinci, Le Li, Chuanhua Duan, Vural Kara, Deborah Stearns-Kurosawa
  • Publication number: 20180051311
    Abstract: A system and method for antibiotic susceptibility testing efficiently determines whether bacteria are alive or have been killed by antibiotic treatment. The antibiotic susceptibility testing device includes at least one reservoir into which a bacteria solution is introduced and a microfluidic channel connected to the reservoir, wherein the cross-sectional size of the microfluidic channel is selected to be comparable to the size of the bacterium to be tested. Furthermore, the electrical resistance or voltage signal across the microchannel is monitored as bacteria swim into and out of the channel. Alternatively, a small population of bacteria can be immobilized in the microchannel. The resistance or voltage signal fluctuates when the bacteria are alive and moving in and out of the channel or wiggling on the microchannel walls. If the bacteria are dead, they have limited motility and the signal fluctuations are significantly smaller.
    Type: Application
    Filed: August 4, 2017
    Publication date: February 22, 2018
    Applicant: TRUSTEES OF BOSTON UNIVERSITY
    Inventors: Kamil Ekinci, Le Li, Chuanhua Duan, Vural Kara, Deborah Stearns-Kurosawa
  • Publication number: 20050161749
    Abstract: A doubly clamped beam has an asymmetric piezoelectric layer within the beam with a gate proximate to the beam within a submicron distance with a gate and beam dipole. A suspended beam is formed using a Cl2/He plasma etch supplied at a flow rate ratio of 1:9 respectively into a plasma chamber. A parametric amplifier comprises a NEMS signal beam driven at resonance and a pair of pump beams driven at twice resonance to generate a modulated Lorentz force on the pump beams to perturb the spring constant of the signal beam. A bridge circuit provides two out-of-phase components of an excitation signal to a first and second NEMS beam in a first and second arm. A DC current is supplied to an AC driven NEMS device to tune the resonant frequency.
    Type: Application
    Filed: May 7, 2003
    Publication date: July 28, 2005
    Inventors: Y. T. Yang, Darrell Harrington, Jean Casey, Jessica Arlett, H. X. Tang, X. M. H. Huang, Kamil Ekinci, Michael Roukes