Patents by Inventor Kamjula P. Reddy

Kamjula P. Reddy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8148179
    Abstract: A hermetically sealed glass package and method for manufacturing the hermetically sealed glass package are described herein using an OLED display as an example. In one embodiment, the hermetically sealed glass package is manufactured by providing a first substrate plate and a second substrate plate. The second substrate contains at least one transition or rare earth metal such as iron, copper, vanadium, manganese, cobalt, nickel, chromium, neodymium and/or cerium. A sensitive thin-film device that needs protection is deposited onto the first substrate plate. A laser is then used to heat the doped second substrate plate in a manner that causes a portion of it to swell and form a hermetic seal that connects the first substrate plate to the second substrate plate and also protects the thin film device.
    Type: Grant
    Filed: March 17, 2010
    Date of Patent: April 3, 2012
    Assignee: Corning Incorporated
    Inventors: Bruce G. Aitken, Paul S. Danielson, James E. Dickinson, Jr., Stephan L. Logunov, Robert Morena, Mark L. Powley, Kamjula P. Reddy, Joseph F. Schroeder, III, Alexander Streltsov
  • Publication number: 20100186449
    Abstract: A hermetically sealed glass package and method for manufacturing the hermetically sealed glass package are described herein using an OLED display as an example. In one embodiment, the hermetically sealed glass package is manufactured by providing a first substrate plate and a second substrate plate. The second substrate contains at least one transition or rare earth metal such as iron, copper, vanadium, manganese, cobalt, nickel, chromium, neodymium and/or cerium. A sensitive thin-film device that needs protection is deposited onto the first substrate plate. A laser is then used to heat the doped second substrate plate in a manner that causes a portion of it to swell and form a hermetic seal that connects the first substrate plate to the second substrate plate and also protects the thin film device.
    Type: Application
    Filed: March 17, 2010
    Publication date: July 29, 2010
    Inventors: Bruce G. Aitken, Paul S. Danielson, James E. Dickinson, JR., Stephan L. Longunov, Robert Morena, Mark L. Powley, Kamjula P. Reddy, Joseph F. Schroeder, III, Alexander Streltsov
  • Publication number: 20080182062
    Abstract: A hermetically sealed glass package and method for manufacturing the hermetically sealed glass package are described herein. In one embodiment, the hermetically sealed glass package is suitable to protect thin film devices which are sensitive to the ambient environment. Some examples of such glass packages are organic emitting light diode (OLED) displays, sensors, and other optical devices. The present invention is demonstrated using an OLED display as an example.
    Type: Application
    Filed: March 31, 2008
    Publication date: July 31, 2008
    Inventors: Keith J. Becken, Stephan L. Logunov, Kamjula P. Reddy, Joseph F. Schroeder, Holly J. Strzepek
  • Patent number: 7371143
    Abstract: A hermetically sealed glass package and method for manufacturing the hermetically sealed glass package are described herein. In one embodiment, the hermetically sealed glass package is suitable to protect thin film devices which are sensitive to the ambient environment. Some examples of such glass packages are organic emitting light diode (OLED) displays, sensors, and other optical devices. The present invention is demonstrated using an OLED display as an example.
    Type: Grant
    Filed: October 20, 2004
    Date of Patent: May 13, 2008
    Assignee: Corning Incorporated
    Inventors: Keith J. Becken, Stephan L. Logunov, Kamjula P. Reddy, Joseph F. Schroeder, III, Holly J. Strzepek
  • Publication number: 20040206953
    Abstract: A hermetically sealed glass package and method for manufacturing the hermetically sealed glass package are described herein using an OLED display as an example. In one embodiment, the hermetically sealed glass package is manufactured by providing a first substrate plate and a second substrate plate. The second substrate contains at least one transition metal such as iron, copper, vanadium, manganese, cobalt, nickel, chromium, and/or neodymium. A sensitive thin-film device that needs protection is deposited onto the first substrate plate. A laser is then used to heat the doped second substrate plate in a manner that causes a portion of it to swell and form a hermetic seal that connects the first substrate plate to the second substrate plate and also protects the thin film device.
    Type: Application
    Filed: April 16, 2003
    Publication date: October 21, 2004
    Inventors: Robert Morena, Mark L. Powley, Kamjula P. Reddy, Joseph F. Schroeder, Alexander Streltsov
  • Patent number: 6737375
    Abstract: Glass frit compositions, calculated in mole percent on an oxide basis, consisting essentially of 24.5 to 29.0% P2O5; 1.0 to 5.0% B2O3; 1.0 to 2.0% Al2O3; and sufficient amounts of SnO and ZnO (51.5 to 66.5% SnO, and 5.0-12.0% ZnO), wherein the molar ratio of SnO:ZnO is in the range of about 5.0:1 to 12:1, and 0.0 to 2.0% SiO2. The glass compositions exhibit, under NMR spectroscopic analysis of 11B nuclei, a signal containing at least two peaks at a chemical shift in the range of approximately −18 to −25 ppm. The frit compositions exhibit long term stability, durability, and resistance to attack against moisture in high temperature and humidity conditions and are capable of attaching optical fiber Bragg gratings without the use of a hermetic chamber and the like. An optoelectronic device that employs a sealing material that comprises a frit made from the glass compositions.
    Type: Grant
    Filed: March 16, 2001
    Date of Patent: May 18, 2004
    Assignee: Corning Incorporated
    Inventors: Carol L. Buhrmaster, Robert Morena, Kamjula P. Reddy, Randall E. Youngman
  • Patent number: 6656599
    Abstract: A metal article, in particular a component for a thermal cracking furnace, and a method of protecting the metal from exposure to carbon, the article having a protective coating that has a glass-ceramic surface and an interior having a CTE between that of the glass-ceramic and the metal.
    Type: Grant
    Filed: March 8, 2001
    Date of Patent: December 2, 2003
    Assignee: Corning Incorporated
    Inventors: David G. Grossman, Kamjula P. Reddy, Michael H. Wasilewski
  • Publication number: 20020176644
    Abstract: The invention relates to a polarization combiner/splitter. The polarization combiner/splitter includes a first ferrule, a first optical fiber assembly coupled to the first ferrule and a second optical fiber assembly coupled to the first ferrule. The polarization combiner/splitter also includes a walk-off crystal coupled to the first ferrule. A second ferrule is coupled to the walk-off crystal; and a third optical fiber assembly coupled to the second ferrule. The first optical fiber assembly includes a first fiber GRIN lens coupled to a first polarization mode maintaining optical waveguide fiber. The second optical fiber assembly includes a second fiber GRIN lens coupled to a second polarization mode maintaining optical waveguide fiber. The third optical fiber assembly includes a third fiber GRIN lens and a first single mode optical waveguide fiber.
    Type: Application
    Filed: March 14, 2002
    Publication date: November 28, 2002
    Inventors: Venkata A. Bhagavatula, John Himmelreich, Gaeyoun Kim, Kamjula P. Reddy, Gregory E. Williams, Bryan J. Wolfe
  • Patent number: 6477299
    Abstract: The invention includes environmentally stable athermalized optical fiber gratings and methods of making such stabilized optical waveguide fiber grating. Stable humidity-resistant athermalized fiber Bragg gratings are provided by stabilizing a negative thermal expansion substrate and utilizing a durable frit to attach the fiber Bragg grating to the substrate.
    Type: Grant
    Filed: March 20, 2000
    Date of Patent: November 5, 2002
    Assignee: Corning Incorporated
    Inventors: George H. Beall, Joel P. Carberry, Kenneth Chyung, Joseph E. Pierson, Kamjula P. Reddy, James E. Webb
  • Publication number: 20020128141
    Abstract: Glass frit compositions, calculated in mole percent on an oxide basis, consisting essentially of 24.5 to 29.0% P2O5; 1.0 to 5.0% B2O3; 1.0 to 2.0% Al2O3; and sufficient amounts of SnO and ZnO (51.5 to 66.5% SnO, and 5.0-12.0% ZnO), wherein the molar ratio of SnO:ZnO is in the range of about 5.0:1 to 12:1, and 0.0 to 2.0% SiO2. The glass compositions exhibit, under NMR spectroscopic analysis of 11B nuclei, a signal containing at least two peaks at a chemical shift in the range of approximately −18 to −25 ppm. The frit compositions exhibit long term stability, durability, and resistance to attack against moisture in high temperature and humidity conditions and are capable of attaching optical fiber Bragg gratings without the use of a hermetic chamber and the like. An optoelectronic device that employs a sealing material that comprises a frit made from the glass compositions.
    Type: Application
    Filed: March 16, 2001
    Publication date: September 12, 2002
    Inventors: Carol L. Buhrmaster, Robert Morena, Kamjula P. Reddy, Randall E. Youngman
  • Publication number: 20020119884
    Abstract: Glass frit compositions, calculated in mole percent on an oxide basis, consisting essentially of 24.5 to 29.0% P2O5; 1.0 to 5.0% B2O3; 1.0 to 2.0% Al2O3; and sufficient amounts of SnO and ZnO (51.5 to 66.5% SnO, and 5.0-12.0% ZnO), wherein the molar ratio of SnO:ZnO is in the range of about 5.0:1 to 12: 1, and 0.0 to 2.0% SiO2. The glass compositions exhibit, under NMR spectroscopic analysis of 11B nuclei, a signal containing at least two peaks at a chemical shift in the range of approximately −18 to −25 ppm. The frit compositions exhibit long term stability, durability, and resistance to attack against moisture in high temperature and humidity conditions and are capable of attaching optical fiber Bragg gratings without the use of a hermetic chamber and the like. An optoelectronic device that employs a sealing material that comprises a frit made from the glass compositions.
    Type: Application
    Filed: December 21, 2000
    Publication date: August 29, 2002
    Inventors: Carol L. Buhrmaster, Robert Morena, Kamjula P. Reddy, Randall E. Youngman
  • Patent number: 6362118
    Abstract: The invention includes methods of stabilizing negative thermal expansion glass-ceramic optical waveguide substrates. The invention includes the stabilized negative thermal expansion glass-ceramic optical waveguide substrates. The stabilized substrates have very stable physical characteristics such as dimensional length when exposed to extreme environments. The stabilized substrates are used to athermalize optical waveguide devices such as optical fiber grating. The stabilized substrates are particularly well suited for providing athermalized fiber Bragg grating.
    Type: Grant
    Filed: April 20, 2000
    Date of Patent: March 26, 2002
    Assignee: Corning Incorporated
    Inventors: George H. Beall, Joel P. Carberry, Kenneth Chyung, Joseph E. Pierson, Kamjula P. Reddy, James E. Webb
  • Publication number: 20020034648
    Abstract: A metal article, in particular a component for a thermal cracking furnace, and a method of protecting the metal from exposure to carbon, the article having a protective coating that has a glass-ceramic surface and an interior having a CTE between that of the glass-ceramic and the metal.
    Type: Application
    Filed: March 8, 2001
    Publication date: March 21, 2002
    Inventors: David G. Grossman, Kamjula P. Reddy, Michael H. Wasilewski
  • Patent number: 6228469
    Abstract: A metal article, in particular a component for a thermal cracking furnace, and a method of protecting the metal from exposure to carbon, the article having a protective coating that has a glass-ceramic surface and an interior having a CTE between that of the glass-ceramic and the metal.
    Type: Grant
    Filed: September 7, 1999
    Date of Patent: May 8, 2001
    Assignee: Corning Incorporated
    Inventors: David G. Grossman, Kamjula P. Reddy, Michael H. Wasilewski