Patents by Inventor Kan Yang

Kan Yang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240094681
    Abstract: A time transfer method based on undifferenced and uncombined PPP-RTK is applied to a time transfer system including a PPP-RTK network end observation station network and PPP-RTK user end observation stations. The network end observation station network includes GNSS reference stations and a network data processing center. The user end observation stations include a time reference station and an ordinary user station. The method includes: acquiring GNSS observations collected by the GNSS reference stations and performing an undifferenced and uncombined PPP-RTK resolution to generate network end products; each of the user end observation stations performing an undifferenced and uncombined PPP-RTK resolution by using collected GNSS observations and the network end product to generate multi-GNSS receiver clock biases; and solving a combined inter-station clock bias by using the receiver clock biases of the ordinary user end observation stations and those of the time reference station serving also as user end.
    Type: Application
    Filed: February 7, 2023
    Publication date: March 21, 2024
    Inventors: Kan Wang, Baoqi Sun, Xuhai Yang
  • Publication number: 20230403135
    Abstract: A decentralized public key management system for named data networks based on blockchain, which solves the Compromised Certificate Authority (CA) Problem. The system divides the power of an individual CA among multiple Public Key Miners (PKMiners) that maintain the public key blockchains. The majority rule in name-principal validation allows the present invention to tolerate compromised PKMiners without causing any damage.
    Type: Application
    Filed: February 14, 2023
    Publication date: December 14, 2023
    Inventors: KAN YANG, LAN WANG
  • Publication number: 20230269072
    Abstract: A decentralized public key management system for named data networks based on blockchain, which solves the Compromised Certificate Authority (CA) Problem. The system divides the power of an individual CA among multiple Public Key Miners (PKMiners) that maintain the public key blockchains. The majority rule in name-principal validation allows the present invention to tolerate compromised PKMiners without causing any damage.
    Type: Application
    Filed: February 14, 2023
    Publication date: August 24, 2023
    Inventors: KAN YANG, LAN WANG
  • Publication number: 20230257355
    Abstract: A hydroxamic acid-containing compound represented by formula I, and a preparation method, and a use thereof are provided. An inhibitory activity of the hydroxamic acid-containing compound on acid sphingomyelinase (ASM) is evaluated by a biological experiment. The compound is further subjected to in vivo pharmacodynamic investigation, and the results show that the compound exhibits significant anti-depression and anti-atherosclerosis (AS) activities, which provides feasibility for the further development of an ASM inhibitor.
    Type: Application
    Filed: November 29, 2022
    Publication date: August 17, 2023
    Applicant: CHINA PHARMACEUTICAL UNIVERSITY
    Inventors: Jinxin WANG, Kan YANG, Yu CHEN, Jinying YU, Jibin DONG, Qinlan GU
  • Patent number: 11582024
    Abstract: A decentralized public key management system for named data networks based on blockchain, which solves the Compromised Certificate Authority (CA) Problem. The system divides the power of an individual CA among multiple Public Key Miners (PKMiners) that maintain the public key blockchains. The majority rule in name-principal validation allows the present invention to tolerate compromised PKMiners without causing any damage.
    Type: Grant
    Filed: July 29, 2019
    Date of Patent: February 14, 2023
    Inventors: Kan Yang, Lan Wang
  • Patent number: 11462338
    Abstract: A scintillation crystal can include a sodium halide that is co-doped with thallium and another element. In an embodiment, the scintillation crystal can include NaX:Tl, Me, wherein X represents a halogen, and Me represents a Group 1 element, a Group 2 element, a rare earth element, or any combination thereof. In a particular embodiment, the scintillation crystal has a property including, for radiation in a range of 300 nm to 700 nm, an emission maximum at a wavelength no greater than 430 nm; or an energy resolution less than 6.4% when measured at 662 keV, 22° C., and an integration time of 1 microsecond. In another embodiment, the co-dopant can be Sr or Ca. The scintillation crystal can have lower energy resolution, better proportionality, a shorter pulse decay time, or any combination thereof as compared to the sodium halide that is doped with only thallium.
    Type: Grant
    Filed: September 25, 2020
    Date of Patent: October 4, 2022
    Assignee: SAINT-GOBAIN CERAMICS & PLASTICS, INC.
    Inventors: Kan Yang, Peter R. Menge, John M. Frank
  • Publication number: 20210012919
    Abstract: A scintillation crystal can include a sodium halide that is co-doped with thallium and another element. In an embodiment, the scintillation crystal can include NaX:Tl, Me, wherein X represents a halogen, and Me represents a Group 1 element, a Group 2 element, a rare earth element, or any combination thereof. In a particular embodiment, the scintillation crystal has a property including, for radiation in a range of 300 nm to 700 nm, an emission maximum at a wavelength no greater than 430 nm; or an energy resolution less than 6.4% when measured at 662 keV, 22° C., and an integration time of 1 microsecond. In another embodiment, the co-dopant can be Sr or Ca. The scintillation crystal can have lower energy resolution, better proportionality, a shorter pulse decay time, or any combination thereof as compared to the sodium halide that is doped with only thallium.
    Type: Application
    Filed: September 25, 2020
    Publication date: January 14, 2021
    Inventors: Kan YANG, Peter R. Menge, John M. Frank
  • Patent number: 10825573
    Abstract: A scintillation crystal can include a sodium halide that is co-doped with thallium and another element. In an embodiment, the scintillation crystal can include NaX:Tl, Me, wherein X represents a halogen, and Me represents a Group 1 element, a Group 2 element, a rare earth element, or any combination thereof. In a particular embodiment, the scintillation crystal has a property including, for radiation in a range of 300 nm to 700 nm, an emission maximum at a wavelength no greater than 430 nm; or an energy resolution less than 6.4% when measured at 662 keV, 22° C., and an integration time of 1 microsecond. In another embodiment, the co-dopant can be Sr or Ca. The scintillation crystal can have lower energy resolution, better proportionality, a shorter pulse decay time, or any combination thereof as compared to the sodium halide that is doped with only thallium.
    Type: Grant
    Filed: October 31, 2019
    Date of Patent: November 3, 2020
    Assignee: SAINT-GOBAIN CERAMICS & PLASTICS, INC.
    Inventors: Kan Yang, Peter R. Menge, John M. Frank
  • Publication number: 20200066419
    Abstract: A scintillation crystal can include a sodium halide that is co-doped with thallium and another element. In an embodiment, the scintillation crystal can include NaX:Tl, Me, wherein X represents a halogen, and Me represents a Group 1 element, a Group 2 element, a rare earth element, or any combination thereof. In a particular embodiment, the scintillation crystal has a property including, for radiation in a range of 300 nm to 700 nm, an emission maximum at a wavelength no greater than 430 nm; or an energy resolution less than 6.4% when measured at 662 keV, 22° C., and an integration time of 1 microsecond. In another embodiment, the co-dopant can be Sr or Ca. The scintillation crystal can have lower energy resolution, better proportionality, a shorter pulse decay time, or any combination thereof as compared to the sodium halide that is doped with only thallium.
    Type: Application
    Filed: October 31, 2019
    Publication date: February 27, 2020
    Inventors: Kan YANG, Peter R. MENGE, John M. FRANK
  • Publication number: 20200059354
    Abstract: A decentralized public key management system for named data networks based on blockchain, which solves the Compromised Certificate Authority (CA) Problem. The system divides the power of an individual CA among multiple Public Key Miners (PKMiners) that maintain the public key blockchains. The majority rule in name-principal validation allows the present invention to tolerate compromised PKMiners without causing any damage.
    Type: Application
    Filed: July 29, 2019
    Publication date: February 20, 2020
    Inventors: KAN YANG, LAN WANG
  • Publication number: 20200020707
    Abstract: A semiconductor processing method is used for manufacturing an antifuse structure. The semiconductor processing method may include using a first mask for exposing a first well region of a semiconductor substrate, performing a first Boron implantation operation to implant Boron into the first well region, using a second mask for exposing the first well region and the second well region of the semiconductor substrate, and performing a second Boron implantation operation to implant Boron into the first well region and the second well region.
    Type: Application
    Filed: May 30, 2019
    Publication date: January 16, 2020
    Inventors: Chao-Kan Yang, Lun-Chun Chen
  • Patent number: 10534095
    Abstract: A radiation detector can include a logic element configured to determine a depth of interaction based on a decay time corresponding to a radiation event and a constituent concentration profile of a radiation-sensing member. In another aspect, a method of detecting radiation can include determining a depth of interaction based on a decay time corresponding to a radiation event and a constituent concentration profile of a radiation-sensing member. The radiation detector and method can be useful in applications where depth of interaction is significant. The radiation-sensing member may include a variety of different materials, and is particularly well suited for alkali metal halides.
    Type: Grant
    Filed: June 7, 2018
    Date of Patent: January 14, 2020
    Assignee: SAINT-GOBAIN CERAMICS & PLASTICS, INC.
    Inventor: Kan Yang
  • Patent number: 10497484
    Abstract: A scintillation crystal can include a sodium halide that is co-doped with thallium and another element. In an embodiment, the scintillation crystal can include NaX:Tl, Me, wherein X represents a halogen, and Me represents a Group 1 element, a Group 2 element, a rare earth element, or any combination thereof. In a particular embodiment, the scintillation crystal has a property including, for radiation in a range of 300 nm to 700 nm, an emission maximum at a wavelength no greater than 430 nm; or an energy resolution less than 6.4% when measured at 662 keV, 22° C., and an integration time of 1 microsecond. In another embodiment, the co-dopant can be Sr or Ca. The scintillation crystal can have lower energy resolution, better proportionality, a shorter pulse decay time, or any combination thereof as compared to the sodium halide that is doped with only thallium.
    Type: Grant
    Filed: October 18, 2018
    Date of Patent: December 3, 2019
    Assignee: SAINT-GOBAIN CERAMICS & PLASTICS, INC.
    Inventors: Kan Yang, Peter R. Menge, John M. Frank
  • Patent number: 10401509
    Abstract: A radiation detector can include a logic element configured to determine an adjusted value for light emission of a luminescent material. A method of using the radiation detector can include determining an adjusted value of a luminescent material. The adjustment can be based on an inverse correlation between decay times corresponding to signal pulses and values of light emissions corresponding to the signal pulses. In an embodiment, the logic element may be further configured to obtain a measured value of a decay time and a measured value for the light emission, and determining an adjusted value for the light emission can be based on the measured value of the decay time and measured value for the light emission.
    Type: Grant
    Filed: April 18, 2018
    Date of Patent: September 3, 2019
    Assignee: SAINT-GOBAIN CERAMICS & PLASTICS, INC.
    Inventor: Kan Yang
  • Patent number: 10351768
    Abstract: Mixed halide scintillation materials of a first general formula A4B(1-y)MyX?6(1-z)X?6z and a second general formula A(4-y)BMyX?6(1-z)X?6z are disclosed. In the general formulas, A is an alkali metal, B is an alkaline earth metal, and X? and X? are two different halogen atoms. Scintillation materials of the first general formula include a divalent external activator M such as Eu2+ or Yb2+ or a trivalent external activator M such as Ce3+. Scintillation materials of the second general formula include a monovalent external activator M such as In+, Na+, or Tl+ or a trivalent external activator such as Ce3+.
    Type: Grant
    Filed: November 15, 2016
    Date of Patent: July 16, 2019
    Assignee: UNIVERSITY OF TENNESSEE RESEARCH FOUNDATION
    Inventors: Luis Stand, Mariya Zhuravleva, Kan Yang, Charles L. Melcher, Adam Coleman Lindsey
  • Publication number: 20190051425
    Abstract: A scintillation crystal can include a sodium halide that is co-doped with thallium and another element. In an embodiment, the scintillation crystal can include NaX:Tl, Me, wherein X represents a halogen, and Me represents a Group 1 element, a Group 2 element, a rare earth element, or any combination thereof. In a particular embodiment, the scintillation crystal has a property including, for radiation in a range of 300 nm to 700 nm, an emission maximum at a wavelength no greater than 430 nm; or an energy resolution less than 6.4% when measured at 662 keV, 22° C., and an integration time of 1 microsecond. In another embodiment, the co-dopant can be Sr or Ca. The scintillation crystal can have lower energy resolution, better proportionality, a shorter pulse decay time, or any combination thereof as compared to the sodium halide that is doped with only thallium.
    Type: Application
    Filed: October 18, 2018
    Publication date: February 14, 2019
    Inventors: Kan Yang, Peter R. Menge, John M. Frank
  • Publication number: 20180356539
    Abstract: A radiation detector can include a logic element configured to determine a depth of interaction based on a decay time corresponding to a radiation event and a constituent concentration profile of a radiation-sensing member. In another aspect, a method of detecting radiation can include determining a depth of interaction based on a decay time corresponding to a radiation event and a constituent concentration profile of a radiation-sensing member. The radiation detector and method can be useful in applications where depth of interaction is significant. The radiation-sensing member may include a variety of different materials, and is particularly well suited for alkali metal halides.
    Type: Application
    Filed: June 7, 2018
    Publication date: December 13, 2018
    Inventor: Kan YANG
  • Patent number: 10134499
    Abstract: A scintillation crystal can include a sodium halide that is co-doped with thallium and another element. In an embodiment, the scintillation crystal can include NaX:Tl, Me, wherein X represents a halogen, and Me represents a Group 1 element, a Group 2 element, a rare earth element, or any combination thereof. In a particular embodiment, the scintillation crystal has a property including, for radiation in a range of 300 nm to 700 nm, an emission maximum at a wavelength no greater than 430 nm; or an energy resolution less than 6.4% when measured at 662 keV, 22° C., and an integration time of 1 microsecond. In another embodiment, the co-dopant can be Sr or Ca. The scintillation crystal can have lower energy resolution, better proportionality, a shorter pulse decay time, or any combination thereof as compared to the sodium halide that is doped with only thallium.
    Type: Grant
    Filed: February 28, 2018
    Date of Patent: November 20, 2018
    Assignee: SAINT-GOBAIN CERAMICS & PLASTICS, INC.
    Inventors: Kan Yang, Peter R. Menge, John M. Frank
  • Publication number: 20180306934
    Abstract: A radiation detector can include a logic element configured to determine an adjusted value for light emission of a luminescent material. A method of using the radiation detector can include determining an adjusted value of a luminescent material. The adjustment can be based on an inverse correlation between decay times corresponding to signal pulses and values of light emissions corresponding to the signal pulses. In an embodiment, the logic element may be further configured to obtain a measured value of a decay time and a measured value for the light emission, and determining an adjusted value for the light emission can be based on the measured value of the decay time and measured value for the light emission.
    Type: Application
    Filed: April 18, 2018
    Publication date: October 25, 2018
    Inventor: Kan YANG
  • Patent number: RE49174
    Abstract: A radiation detector can include a scintillator having opposing end surfaces and a plurality of discrete photosensors disposed on an end surface of the scintillator. In an embodiment, the photosensors are disposed at the corners or along the peripheral edge of the end surface, as opposed to being disposed at the center of the end surface. In an embodiment, the plurality of discrete photosensors may cover at most 80% of a surface area of the end surface of the scintillator and may not cover a center of the end surface of the scintillator. In a further embodiment, an aspect ratio of the monolithic scintillator can be selected to improve energy resolution.
    Type: Grant
    Filed: April 23, 2020
    Date of Patent: August 16, 2022
    Assignee: SAINT-GOBAIN CERAMICS & PLASTICS, INC.
    Inventors: Kan Yang, Peter R. Menge