Patents by Inventor Kanako Oshima

Kanako Oshima has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11911877
    Abstract: An article including an inorganic compound according to the present invention includes a porous part and a no-porous frame body surrounding the porous part in a plane direction, and includes a stress relaxation part between the porous part and the frame body.
    Type: Grant
    Filed: February 27, 2020
    Date of Patent: February 27, 2024
    Assignee: Canon Kabushiki Kaisha
    Inventors: Kanako Oshima, Nobuhiro Yasui, Hiroshi Saito, Yoshihiro Ohashi
  • Publication number: 20240034683
    Abstract: A powder that is heated by light, the powder comprising a silicon monoxide particle and another particle other than the silicon monoxide particle, wherein the another particle includes, at least one type of particle selected from the group including an aluminum oxide particle, a silicon dioxide particle, and an oxide particle which includes silicon and aluminum as elements, and wherein in a case where the another particle are converted into oxides represented by the Al2O3 and the SiO2, x, y, and z representing mass fractions of Al2O3, SiO2, and SiO, respectively, in an entirety of the powder satisfy relationships.
    Type: Application
    Filed: October 9, 2023
    Publication date: February 1, 2024
    Inventors: Shunsuke Murakami, YASUSHI SHIMIZU, NOBUHIRO YASUI, KANAKO OSHIMA
  • Publication number: 20240033968
    Abstract: A method of producing a manufactured object including forming the manufactured object by performing, once or a plurality of times, a step of forming a powder layer from material powders containing powders of an inorganic compound and a step of irradiating a predetermined region of a surface of the powder layer with an energy beam and thereby fusing/solidifying the material powders. In the step of fusing/solidifying the material powders, an amorphous-rich region and a crystalline-rich region are formed separately by changing at least one of an output of the energy beam, a relative position between the surface of the powder layer and a focus of the energy beam, and a scanning rate.
    Type: Application
    Filed: October 9, 2023
    Publication date: February 1, 2024
    Inventors: Kanako Oshima, Hisato Yabuta, Nobuhiro Yasui
  • Patent number: 11837975
    Abstract: A piezoelectric material includes: an oxide containing Na, Ba, Nb, Ti, and Mn, in which the oxide has a perovskite-type structure, a total amount of metal elements other than Na, Ba, Nb, Ti, and Mn contained in the piezoelectric material is 0.5 mol % or less with respect to a total amount of Na, Ba, Nb, Ti, and Mn, a molar ratio x of Ti to a total molar amount of Nb and Ti is 0.05?x?0.12, a molar ratio y of Na to Nb is 0.93?y?0.98, a molar ratio z of Ba to Ti is 1.09?z?1.60, a molar ratio m of Mn to the total molar amount of Nb and Ti is 0.0006?m?0.0030, and 1.07?y×z?1.50 is satisfied.
    Type: Grant
    Filed: January 29, 2020
    Date of Patent: December 5, 2023
    Assignee: CANON KABUSHIKI KAISHA
    Inventors: Makoto Kubota, Kanako Oshima, Hisato Yabuta, Takanori Matsuda, Miki Ueda, Fumio Uchida, Hiroki Imai, Kenji Maeda, Chiemi Shimizu
  • Patent number: 11813769
    Abstract: Provided is a method of producing a manufactured object including forming the manufactured object by performing, once or a plurality of times, a step of forming a powder layer from material powders containing powders of an inorganic compound and a step of irradiating a predetermined region of a surface of the powder layer with an energy beam and thereby fusing/solidifying the material powders. In the step of fusing/solidifying the material powders, an amorphous-rich region and a crystalline-rich region are formed separately by changing at least one of an output of the energy beam, a relative position between the surface of the powder layer and a focus of the energy beam, and a scanning rate.
    Type: Grant
    Filed: April 22, 2020
    Date of Patent: November 14, 2023
    Assignee: Canon Kabushiki Kaisha
    Inventors: Kanako Oshima, Hisato Yabuta, Nobuhiro Yasui
  • Publication number: 20230255732
    Abstract: A dental prosthesis fabrication system includes: an intraoral information obtaining unit that obtains three-dimensional shape information of a tooth and color information of the tooth; a data generation unit that generates three-dimensional shape data and color data of the tooth based on the three-dimensional shape information of the tooth; a forming unit that forms a dental prosthesis based on the three-dimensional shape data of the tooth; and a coloring unit that applies color to a surface of the dental prosthesis based on the color data of the tooth.
    Type: Application
    Filed: April 24, 2023
    Publication date: August 17, 2023
    Inventors: HIROSHI SAITO, KANAKO OSHIMA, NOBUHIRO YASUI
  • Patent number: 11718567
    Abstract: Provided are a powder for laser manufacturing which can be stably manufactured and from which a three-dimensional manufactured object ensuring a manufacturing accuracy can be obtained and a using method thereof. A powder for ceramic manufacturing for obtaining a manufactured object by repeatedly sintering or fusing and solidifying in sequence a powder in an irradiation portion with laser light, in which the powder includes a plurality of compositions, at least one composition of the compositions is an absorber that relatively strongly absorbs the laser light compared to other compositions, and at least a part of the absorber changes to a different composition that relatively weakly absorbs the laser light by irradiation with the laser light and a using method of a powder in which the powder is used.
    Type: Grant
    Filed: January 7, 2020
    Date of Patent: August 8, 2023
    Assignee: CANON KABUSHIKI KAISHA
    Inventors: Nobuhiro Yasui, Hisato Yabuta, Kanako Oshima, Hiroshi Saito, Yoshihiro Ohashi, Makoto Kubota, Akira Uebayashi
  • Patent number: 11647677
    Abstract: Provided is a piezoelectric ceramics including crystal grains each including: a first region that is formed of a perovskite-type metal oxide having a crystal structure in which a central element of a unit cell is located at an asymmetrical position; and a second region that is formed of a perovskite-type metal oxide having a crystal structure in which a central element of a unit cell is located at a symmetrical position, and that is present inside the first region, wherein a ratio of a cross-sectional area of the second region to a cross-sectional area of the piezoelectric ceramics is 0.1% or less.
    Type: Grant
    Filed: May 29, 2019
    Date of Patent: May 9, 2023
    Assignee: CANON KABUSHIKI KAISHA
    Inventors: Akira Uebayashi, Kanako Oshima, Makoto Kubota, Tatsuo Furuta, Yasushi Shimizu, Mikio Shimada, Chiaki Arii
  • Publication number: 20230021311
    Abstract: Provided are a powder for laser manufacturing which can be stably manufactured and from which a three-dimensional manufactured object ensuring a manufacturing accuracy can be obtained and a using method thereof. A powder for ceramic manufacturing for obtaining a manufactured object by repeatedly sintering or fusing and solidifying in sequence a powder in an irradiation portion with laser light, in which the powder includes a plurality of compositions, at least one composition of the compositions is an absorber that relatively strongly absorbs the laser light compared to other compositions, and at least a part of the absorber changes to a different composition that relatively weakly absorbs the laser light by irradiation with the laser light and a using method of a powder in which the powder is used.
    Type: Application
    Filed: September 16, 2022
    Publication date: January 26, 2023
    Inventors: Nobuhiro Yasui, Hisato Yabuta, Kanako Oshima, Hiroshi Saito, Yoshihiro Ohashi, Makoto Kubota, Akira Uebayashi
  • Publication number: 20220379369
    Abstract: A casting core containing a ceramic and having sufficient mechanical strength to withstand a casting process over a long period of time and good solubility in alkaline solutions. The casting core includes a core, a surface layer, and an intermediate layer between the core and the surface layer. The intermediate layer has a lower relative density than the surface layer and the core.
    Type: Application
    Filed: April 6, 2022
    Publication date: December 1, 2022
    Inventors: Nobuhiro Yasui, Yasushi Shimizu, Shunsuke Murakami, Kanako Oshima
  • Patent number: 11515468
    Abstract: Provided is a piezoelectric ceramics having a gradual change in piezoelectric constant depending on an ambient temperature. Specifically, provided is a single-piece piezoelectric ceramics including as a main component a perovskite-type metal oxide represented by a compositional formula of ABO3, wherein an A site element in the compositional formula contains Ba and M1, the M1 being formed of at least one kind selected from the group consisting of Ca and Bi, wherein a B site element in the compositional formula contains T1 and M2, the M2 being formed of at least one kind selected from the group consisting of Zr, Sn, and Hf, wherein concentrations of the M1 and the M2 change in at least one direction of the piezoelectric ceramics, and wherein increase and decrease directions of concentration changes of the M1 and the M2 are directions opposite to each other.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: November 29, 2022
    Assignee: CANON KABUSHIKI KAISHA
    Inventors: Makoto Kubota, Yasushi Shimizu, Takanori Matsuda, Tatsuo Furuta, Kaoru Miura, Miki Ueda, Kanako Oshima
  • Patent number: 11509244
    Abstract: A lead-free piezoelectric material includes perovskite-type metal oxide containing Na, Nb, Ba, Ti, and Mg and indicates excellent piezoelectric properties. The piezoelectric material satisfies the following relational expression (1): 0.430?a?0.460, 0.433?b?0.479, 0.040?c?0.070, 0.0125?d?0.0650, 0.0015?e?0.0092, 0.9×3e?c?d?1.1×3e, a+b+c+d+e=1, where a, b, c, d, and e denote the relative numbers of Na, Nb, Ba, Ti, and Mg atoms, respectively.
    Type: Grant
    Filed: January 29, 2020
    Date of Patent: November 22, 2022
    Assignees: CANON KABUSHIKI KAISHA, FUJI CHEMICAL CO., LTD.
    Inventors: Takanori Matsuda, Makoto Kubota, Hisato Yabuta, Miki Ueda, Kanako Oshima, Fumio Uchida, Hiroki Imai, Kenji Maeda, Chiemi Shimizu
  • Patent number: 11489462
    Abstract: Provided is a lead-free piezoelectric material reduced in dielectric loss tangent, and achieving both a large piezoelectric constant and a large mechanical quality factor. A piezoelectric material according to at least one embodiment of the present disclosure is a piezoelectric material including a main component formed of a perovskite-type metal oxide represented by the general formula (1): Nax+s(1?y)(BiwBa1?s?w)1?yNbyTi1?yO3 (where 0.84?x?0.92, 0.84?y?0.92, 0.002?(w+s)(1?y)?0.035, and 0.9?w/s?1.1), and a Mn component, wherein the content of the Mn is 0.01 mol % or more and 1.00 mol % or less with respect to the perovskite-type metal oxide.
    Type: Grant
    Filed: January 29, 2020
    Date of Patent: November 1, 2022
    Assignees: CANON KABUSHIKI KAISHA, FUJI CHEMICAL CO., LTD.
    Inventors: Kanako Oshima, Miki Ueda, Takanori Matsuda, Makoto Kubota, Hisato Yabuta, Fumio Uchida, Hiroki Imai, Kenji Maeda, Chiemi Shimizu
  • Patent number: 11450801
    Abstract: Provided is a method of manufacturing a piezoelectric element in which, at a time when the piezoelectric element is manufactured, a piezoelectric material is prevented from being exposed to a temperature higher than a Curie temperature thereof to be depolarized, to thereby significantly decrease piezoelectric properties. The method of manufacturing a piezoelectric element includes a first step of arranging a plurality of electrodes on a piezoelectric material, electrically short-circuiting two or more electrodes of the plurality of electrodes, and subjecting the piezoelectric material to heat treatment, and a second step of, after the first step, electrically opening the short circuit of the two or more electrodes at a time when a temperature of the piezoelectric material decreases to less than a temperature of the piezoelectric material at a time of the heat treatment.
    Type: Grant
    Filed: March 1, 2018
    Date of Patent: September 20, 2022
    Assignee: CANON KABUSHIKI KAISHA
    Inventors: Akira Uebayashi, Tatsuo Furuta, Kanako Oshima, Takayuki Watanabe, Jumpei Hayashi, Satoshi Fujita, Yuki Iitsuka
  • Patent number: 11440850
    Abstract: A material powder for additive modeling including a nitride, and a eutectic oxide, the nitride having an average density lower than an average density of the eutectic oxide, is used to produce a structure using an additive modeling method.
    Type: Grant
    Filed: July 23, 2020
    Date of Patent: September 13, 2022
    Assignee: CANON KABUSHIKI KAISHA
    Inventors: Nobuhiro Yasui, Hisato Yabuta, Kanako Oshima
  • Patent number: 11401214
    Abstract: A material powder for additive modeling including a nitride, and a eutectic oxide, the nitride having an average density lower than an average density of the eutectic oxide, is used to produce a structure using an additive modeling method.
    Type: Grant
    Filed: July 23, 2020
    Date of Patent: August 2, 2022
    Assignee: CANON KABUSHIKI KAISHA
    Inventors: Nobuhiro Yasui, Hisato Yabuta, Kanako Oshima
  • Publication number: 20220227670
    Abstract: A method for manufacturing a ceramic article including (i) a step of irradiating a powder mainly containing a ceramic material with an energy beam to sinter or melt and solidify the powder into a solidified portion, wherein the step is repeated a predetermined number of times to sequentially bond the resulting solidified portions together to obtain a ceramic modeling object, (ii) a step of allowing the shaped ceramic object to absorb a metal component-containing liquid that contains inorganic particles containing a metal element; and (iii) a step of heating the shaped ceramic object that has absorbed the metal component-containing liquid.
    Type: Application
    Filed: April 7, 2022
    Publication date: July 21, 2022
    Inventors: Kanako Oshima, Nobuhiro Yasui, Yasushi Shimizu, Yoshinori Kotani, Shunsuke Murakami
  • Publication number: 20220227021
    Abstract: (i) a step of disposing a powder that includes an absorber absorbing light of a wavelength included in a laser beam to be irradiated and silicon dioxide as a main component; (ii) a step of sintering or melting and solidifying the powder by irradiating the powder with a laser beam; and (iii) a step of heat-treating a shaped object formed by repeating the steps (i) and (ii) at 1470° C. or more and less than 1730° C.
    Type: Application
    Filed: April 7, 2022
    Publication date: July 21, 2022
    Inventors: Shunsuke Murakami, Yasushi Shimizu, Nobuhiro Yasui, Kanako Oshima
  • Patent number: 11285661
    Abstract: A powder for ceramic shaping to be used for obtaining a structure by repeating the execution of a process of sequential melting and solidification by irradiation of a laser beam contains inorganic compound particles and an organic compound, the organic compound being provided on the surfaces of the inorganic compound particles, and the organic compound has an absorption band that overlaps the wavelength of the laser beam.
    Type: Grant
    Filed: November 2, 2018
    Date of Patent: March 29, 2022
    Assignee: CANON KABUSHIKI KAISHA
    Inventors: Hisato Yabuta, Nobuhiro Yasui, Kanako Oshima, Akira Tsuboyama
  • Patent number: 11272080
    Abstract: A vibration device comprises a vibrating member having at least n (n?2) piezoelectric elements arranged on a vibrating plate, each of the piezoelectric elements being formed by using a lead-free piezoelectric material and electrodes, wherein if the temperature that maximizes the piezoelectric constant of the piezoelectric material of each of the n piezoelectric elements is expressed as Tm (m being a natural number between 1 and n), at least two of T1 through Tn differ from each other.
    Type: Grant
    Filed: January 29, 2019
    Date of Patent: March 8, 2022
    Assignee: CANON KABUSHIKI KAISHA
    Inventors: Yasushi Shimizu, Takanori Matsuda, Shinya Koyama, Makoto Kubota, Akira Uebayashi, Kanako Oshima