Patents by Inventor Kang-Chun Peng

Kang-Chun Peng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240145632
    Abstract: A micro light emitting device includes an epitaxial structure, a conductive layer, and a first insulating layer. The epitaxial structure has a first surface and a second surface opposite to the first surface, and includes a first semiconductor layer, an active layer and a second semiconductor layer that are arranged in such order in a direction from the first surface to the second surface. The conductive layer is formed on a surface of the first semiconductor layer away from the active layer. The first insulating layer is formed on the surface of the first semiconductor layer away from the active layer, and exposes at least a part of the conductive layer.
    Type: Application
    Filed: October 23, 2023
    Publication date: May 2, 2024
    Inventors: Ming-Chun TSENG, Shaohua HUANG, Hongwei WANG, Kang-Wei PENG, Su-Hui LIN, Xiaomeng LI, Chi-Ming TSAI, Chung-Ying CHANG
  • Publication number: 20240146883
    Abstract: A method for adjusting a projection parameter and a projection system are disclosed. In the projection system, a processor is configured to drive multiple projectors to project multiple projection images respectively and obtain a full projection range through calculation, select a target area from at least one overlapping area included in the full projection range and obtain a target projection parameter value of the target area, obtain multiple intersection points of the overlapping area on a boundary of the full projection range, define connecting lines between a center point of the target area and the intersection points as dividing lines to divide the full projection range into multiple sub-areas, respectively adjust a projection parameter value of each of the sub-areas according to the target projection parameter value of the target area, and perform projection through the corresponding projector based on the adjusted projection parameter value of each of the sub-areas.
    Type: Application
    Filed: October 26, 2023
    Publication date: May 2, 2024
    Applicant: Coretronic Corporation
    Inventors: Chien-Chun Peng, Chia-Yen Ou, Kang-Shun Hsu, Hsun-Cheng Tu
  • Publication number: 20240106996
    Abstract: A method for adjusting a projection boundary and a projection system are provided. Multiple imaging apparatuses corresponding to multiple projection apparatuses are driven, and each imaging apparatus obtains a corresponding captured image by capturing projected image projected by corresponding one projection apparatus and surrounding area of the projected image. All captured images are displayed on a display, and a main bounding box corresponding to each projected image and a reference bounding box corresponding to the surrounding area are displayed on each captured image. The main bounding box of each captured image is independently adjusted relative to the reference bounding box to obtain an adjusted main bounding box. A full image boundary is calculated based on the respective adjusted main bounding boxes. The projection apparatuses are driven to project an adjusted full image based on the full image boundary.
    Type: Application
    Filed: September 20, 2023
    Publication date: March 28, 2024
    Applicant: Coretronic Corporation
    Inventors: Chia-Yen Ou, Hsun-Cheng Tu, Chien-Chun Peng, Kang-Shun Hsu
  • Publication number: 20230225626
    Abstract: In a noncontact vital sign sensing device of the present invention, a gain detector is provided to detect a gain between an oscillation signal and a received signal. Gain detection can cancel out the amplitude noise of an oscillator such that frequency information of vital sign(s) of a subject can be extracted from the gain without null-point issue, and vital sign(s) of the subject located at any position within sensing range can be detected.
    Type: Application
    Filed: May 12, 2022
    Publication date: July 20, 2023
    Inventors: Kang-Chun Peng, Tzyy-Sheng Horng, Fu-Kang Wang, Meng-Che Sung
  • Patent number: 11360189
    Abstract: A phase-tracking self-injection-locked (SIL) radar includes an SIL oscillator, a phase-tracking SIL loop and a frequency-locked loop. The SIL oscillator generates an electrical oscillation signal and receives an electrical injection signal related to the electrical oscillation signal for self-injection locking. The phase-tracking SIL loop receives the electrical oscillation signal and outputs the electrical injection signal to the SIL oscillator with a constant phase difference between the electrical oscillation signal and the electrical injection signal. The frequency-locked loop receives the electrical oscillation signal and produces an electrical control signal to control the phase-tracking SIL loop or the SIL oscillator for eliminating the frequency shift of the SIL oscillator caused by the phase-tracking SIL loop.
    Type: Grant
    Filed: November 30, 2020
    Date of Patent: June 14, 2022
    Assignee: NATIONAL SUN YAT-SEN UNIVERSITY
    Inventors: Tzyy-Sheng Horng, Shiang-Hwua Yu, Kang-Chun Peng, Wei-Chih Su
  • Publication number: 20220128651
    Abstract: A phase-tracking self-injection-locked (SIL) radar includes an SIL oscillator, a phase-tracking SIL loop and a frequency-locked loop. The SIL oscillator generates an electrical oscillation signal and receives an electrical injection signal related to the electrical oscillation signal for self-injection locking. The phase-tracking SIL loop receives the electrical oscillation signal and outputs the electrical injection signal to the SIL oscillator with a constant phase difference between the electrical oscillation signal and the electrical injection signal. The frequency-locked loop receives the electrical oscillation signal and produces an electrical control signal to control the phase-tracking SIL loop or the SIL oscillator for eliminating the frequency shift of the SIL oscillator caused by the phase-tracking SIL loop.
    Type: Application
    Filed: November 30, 2020
    Publication date: April 28, 2022
    Inventors: Tzyy-Sheng Horng, Shiang-Hwua Yu, Kang-Chun Peng, Wei-Chih Su
  • Publication number: 20210302558
    Abstract: A vital-sign radar sensor using wireless frequency-locked loop includes a voltage-controlled oscillator (VCO), an antenna component, a mixer, a loop filter and a frequency demodulation component. The VCO outputs an oscillation signal to the antenna component via a output port, the antenna component transmits the oscillation signal to a subject as a transmitted signal and receives a reflected signal from the subject as a received signal, the mixer receives and mix the oscillation signal and the received signal into a mixed signal, the loop filter receives and filter the mixed signal to output a filtered signal, the filtered signal is delivered to the VCO via a tuning port, the frequency demodulation component receives and demodulates the oscillation signal to output a vital-sign signal.
    Type: Application
    Filed: May 28, 2020
    Publication date: September 30, 2021
    Inventors: Kang-Chun Peng, Siang-En Chen, Fu-Kang Wang, Tzyy-Sheng Horng
  • Publication number: 20210275105
    Abstract: Vital sign sensing method and system using a communication device are disclosed in the present invention. An EVM algorithm is performed on a demodulated in-phase signal and a demodulated quadrature-phase signal output from an IQ demodulator for extracting a vital-sign signal of a subject. Any communication device can still preserve communication function while being used as a vital sign sensor, no other hardware architecture is required. The vital sign sensing method and system can overcome the shortcoming of signal interference between the conventional active sensing system and the communication device and also can reduce the construction costs of noncontact vital sign sensing system significantly.
    Type: Application
    Filed: April 16, 2020
    Publication date: September 9, 2021
    Inventors: Kang-Chun Peng, Jen-Hao Lee
  • Patent number: 9603555
    Abstract: A motion/vibration detection system and method therefore are provided. The system includes a transmitter and a receiver. The transmitter includes a transmit/receive antenna unit and a first oscillator. The receiver includes a receiving unit and a demodulation unit. The transmit/receive antenna unit receives an output signal from the first oscillator and transmits a detection signal. The detection signal is reflected from at least one object under detection into a reflected detection signal, which is received by the transmit/receive antenna unit. The transmit/receive antenna unit injects the reflected detection signal into the first oscillator and accordingly the first oscillator is under a self-injection locking mode. The receiving unit receives the detection signal. The demodulation unit demodulates the detection signal received by the receiving unit into a baseband output signal, to extract at least one motion/vibration information of the objection under detection.
    Type: Grant
    Filed: January 14, 2014
    Date of Patent: March 28, 2017
    Assignees: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE, NATIONAL SUN YAT-SEN UNIVERSITY
    Inventors: Tzyy-Sheng Horng, Fu-Kang Wang, Kang-Chun Peng
  • Patent number: 9423496
    Abstract: A wireless detection device is provided, comprising a voltage control oscillation unit, a transceiving unit, demodulation unit and processing unit. The voltage control oscillation unit generates different oscillation signals according to analog control voltages and corresponding injection signals. The transceiving unit outputs first wireless signals to a predetermined area according to the oscillation signals and receives second wireless signals generated by reflection of the first wireless signals to generate the injection signal. The demodulation unit demodulates the oscillation signals into first voltage signals. The processing unit subtracts the corresponding analog control voltages from the first voltage signals to generate second voltage signals, and when the variation of the second voltage signals exceeds a predetermined value on a target frequency in frequency domain, the processing unit calculates a real distance between an object and the transceiving unit.
    Type: Grant
    Filed: March 6, 2013
    Date of Patent: August 23, 2016
    Assignee: NATIONAL SUN YAT-SEN UNIVERSITY
    Inventors: Tzyy-Sheng Horng, Fu-Kang Wang, Kang-Chun Peng
  • Patent number: 9375153
    Abstract: A motion/vibration sensor includes a transmit/receive antenna unit, an oscillation unit and a frequency-mixing unit. The transmit/receive antenna unit receives an output signal from the oscillation unit and transmits a detection signal toward at least one object. The detection signal is reflected by the object as a reflected detection signal and received by the transmit/receive antenna unit. The oscillation unit receives the reflected detection signal from the transmit/receive antenna unit for self-injection locking; and the frequency-mixing unit receives the reflected detection signal from the transmit/receive antenna unit for frequency demodulation. The frequency-mixing unit mixes and demodulates the reflected detection signal from the transmit/receive antenna unit with the output signal from the oscillation unit into a baseband output signal which represents a motion/vibration information.
    Type: Grant
    Filed: January 10, 2014
    Date of Patent: June 28, 2016
    Assignees: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE, NATIONAL SUN YAT-SEN UNIVERSITY
    Inventors: Tzyy-Sheng Horng, Fu-Kang Wang, Kang-Chun Peng
  • Patent number: 8890590
    Abstract: A wideband frequency synthesizer and a frequency synthesizing method thereof are provided. The wideband frequency synthesizer includes a phase-locked loop unit, a first voltage-controlled oscillating unit and a first frequency mixer unit. The phase-locked loop unit receives a reference signal and a feedback signal and generates a first oscillating signal according to the reference signal and the feedback signal. The first voltage-controlled oscillating unit generates a second oscillating signal. The first frequency mixer is coupled to the phase-locked loop unit and the first voltage-controlled oscillating unit, receives the first oscillating signal and the second oscillating signal for mixing frequencies of the first oscillating signal and the second oscillating signal to generate an output signal and taking the output signal as the feedback signal for outputting to the phase-locked loop unit.
    Type: Grant
    Filed: August 8, 2013
    Date of Patent: November 18, 2014
    Assignee: National Sun Yat-sen University
    Inventors: Tzyy-Sheng Horng, Kang-Chun Peng, Fu-Kang Wang
  • Publication number: 20140327478
    Abstract: A wideband frequency synthesizer and a frequency synthesizing method thereof are provided. The wideband frequency synthesizer includes a phase-locked loop unit, a first voltage-controlled oscillating unit and a first frequency mixer unit. The phase-locked loop unit receives a reference signal and a feedback signal and generates a first oscillating signal according to the reference signal and the feedback signal. The first voltage-controlled oscillating unit generates a second oscillating signal. The first frequency mixer is coupled to the phase-locked loop unit and the first voltage-controlled oscillating unit, receives the first oscillating signal and the second oscillating signal for mixing frequencies of the first oscillating signal and the second oscillating signal to generate an output signal and taking the output signal as the feedback signal for outputting to the phase-locked loop unit.
    Type: Application
    Filed: August 8, 2013
    Publication date: November 6, 2014
    Applicant: National Sun Yat-sen University
    Inventors: Tzyy-Sheng Horng, Kang-Chun Peng, Fu-Kang Wang
  • Patent number: 8754772
    Abstract: A non-contact vital sign sensing system including a vital sign sensing module and at least one body movement interference cancellation module is provided. The vital sign sensing module and the at least one body movement interference cancellation module are under a self-injection locking (SIL) mode. The vital sign sensing module senses an isotropic vital sign of a body. A mutual injection locking (MIL) mode is achieved between the vital sign sensing module and the at least one body movement interference cancellation module to sense the anisotropic body movement signal and to cancel the body movement interference.
    Type: Grant
    Filed: April 26, 2012
    Date of Patent: June 17, 2014
    Assignees: Industrial Technology Research Institute, National Sun Yat-Sen University
    Inventors: Tzyy-Sheng Horng, Fu-Kang Wang, Kang-Chun Peng
  • Publication number: 20140128748
    Abstract: A motion/vibration sensor includes a transmit/receive antenna unit, an oscillation unit and a frequency-mixing unit. The transmit/receive antenna unit receives an output signal from the oscillation unit and transmits a detection signal toward at least one object. The detection signal is reflected by the object as a reflected detection signal and received by the transmit/receive antenna unit. The oscillation unit receives the reflected detection signal from the transmit/receive antenna unit for self-injection locking; and the frequency-mixing unit receives the reflected detection signal from the transmit/receive antenna unit for frequency demodulation. The frequency-mixing unit mixes and demodulates the reflected detection signal from the transmit/receive antenna unit with the output signal from the oscillation unit into a baseband output signal which represents a motion/vibration information.
    Type: Application
    Filed: January 10, 2014
    Publication date: May 8, 2014
    Applicants: National Sun Yat-Sen University, Industrial Technology Research Institute
    Inventors: Tzyy-Sheng Horng, Fu-Kang Wang, Kang-Chun Peng
  • Publication number: 20140123763
    Abstract: A motion/vibration detection system and method therefore are provided. The system includes a transmitter and a receiver. The transmitter includes a transmit/receive antenna unit and a first oscillator. The receiver includes a receiving unit and a demodulation unit. The transmit/receive antenna unit receives an output signal from the first oscillator and transmits a detection signal. The detection signal is reflected from at least one object under detection into a reflected detection signal, which is received by the transmit/receive antenna unit. The transmit/receive antenna unit injects the reflected detection signal into the first oscillator and accordingly the first oscillator is under a self-injection locking mode. The receiving unit receives the detection signal. The demodulation unit demodulates the detection signal received by the receiving unit into a baseband output signal, to extract at least one motion/vibration information of the objection under detection.
    Type: Application
    Filed: January 14, 2014
    Publication date: May 8, 2014
    Applicants: NATIONAL SUN YAT-SEN UNIVERSITY, INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Tzyy-Sheng Horng, Fu-Kang Wang, Kang-Chun Peng
  • Patent number: 8648611
    Abstract: An RF sensing circuit with a voltage-controlled oscillator comprises a low noise amplifier (LNA), a voltage-controlled oscillator (VCO), a frequency demodulating unit, a bandpass filter (BPF) and a digital signal processing unit. The VCO has an injection signal input port and a voltage input port, wherein the injection signal input port is electrically connected with an output of the LNA. The frequency demodulating unit is electrically connected with an output of the VCO and the BPF is electrically connected with an output of the frequency demodulating unit. The digital signal processing unit is electrically connected with an output of the BPF and the voltage input port of the VCO.
    Type: Grant
    Filed: April 9, 2010
    Date of Patent: February 11, 2014
    Assignees: Industrial Technology Research Institute, National Sun Yat-Sen University
    Inventors: Tzyy-Sheng Horng, Chien-Jung Li, Kang-Chun Peng, Fu-Kang Wang
  • Publication number: 20130338515
    Abstract: A wireless detection device is provided, comprising a voltage control oscillation unit, a transceiving unit, demodulation unit and processing unit. The voltage control oscillation unit generates different oscillation signals according to analog control voltages and corresponding injection signals. The transceiving unit outputs first wireless signals to a predetermined area according to the oscillation signals and receives second wireless signals generated by reflection of the first wireless signals to generate the injection signal. The demodulation unit demodulates the oscillation signals into first voltage signals. The processing unit subtracts the corresponding analog control voltages from the first voltage signals to generate second voltage signals, and when the variation of the second voltage signals exceeds a predetermined value on a target frequency in frequency domain, the processing unit calculates a real distance between an object and the transceiving unit.
    Type: Application
    Filed: March 6, 2013
    Publication date: December 19, 2013
    Applicant: National Sun Yat-Sen University
    Inventors: Tzyy-Sheng Horng, Fu-Kang Wang, Kang-Chun Peng
  • Patent number: 8498601
    Abstract: A polar receiver using injection-locking technique includes an antenna, a first filter, a first voltage-controlled oscillator, a first mixer, a frequency discriminator, a second filter, a third filter, a first analog-digital converter, a second analog-digital converter and a digital signal processing unit. Mentioned polar receiver enables to separate an envelope signal and a frequency-modulated signal from a radio frequency signal received from the antenna via the injection locking technique of the first voltage-controlled oscillator and the frequency discriminator. The envelope component and the frequency-modulated component can be digitally processed by the digital signal processing unit to accomplish polar demodulation.
    Type: Grant
    Filed: June 1, 2012
    Date of Patent: July 30, 2013
    Assignee: National Sun Yat-Sen University
    Inventors: Tzyy-Sheng Horng, Chi-Tsan Chen, Chieh-Hsun Hsiao, Kang-Chun Peng
  • Publication number: 20130143509
    Abstract: A polar receiver using injection-locking technique includes an antenna, a first filter, a first voltage-controlled oscillator, a first mixer, a frequency discriminator, a second filter, a third filter, a first analog-digital converter, a second analog-digital converter and a digital signal processing unit. Mentioned polar receiver enables to separate an envelope signal and a frequency-modulated signal from a radio frequency signal received from the antenna via the injection locking technique of the first voltage-controlled oscillator and the frequency discriminator. The envelope component and the frequency-modulated component can be digitally processed by the digital signal processing unit to accomplish polar demodulation.
    Type: Application
    Filed: June 1, 2012
    Publication date: June 6, 2013
    Applicant: NATIONAL SUN YAT-SEN UNIVERSITY
    Inventors: Tzyy-Sheng Horng, Chi-Tsan Chen, Chieh-Hsun Hsiao, Kang-Chun Peng