Patents by Inventor Kang Karen Xiao

Kang Karen Xiao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11969929
    Abstract: Described herein is a multilayer microporous film or membrane that may exhibit improved properties, including improved dielectric break down and strength, compared to prior monolayer or tri-layer microporous membranes of the same thickness. The preferred multilayer microporous membrane comprises microlayers and one or more lamination interfaces or barriers. Also disclosed is a battery separator or battery comprising one or more of the multilayer microporous films or membranes. The inventive battery and battery separator is preferably safer and more robust than batteries and battery separators using prior monolayer and tri-layer microporous membranes. Also, described herein is a method for making the multilayer microporous separators, membranes or films described herein.
    Type: Grant
    Filed: May 10, 2019
    Date of Patent: April 30, 2024
    Assignee: Celgard, LLC
    Inventors: Kang Karen Xiao, Stefan Reinartz, Takahiko Kondo, Hisaki Ikebata, Eric J. Penegar, Robert Nark, Changqing Wang Adams, Masaaki Okada, Brian R. Stepp, Eric Robert White, Allen M. Donn, Katharine Chemelewski
  • Patent number: 11923497
    Abstract: Described herein, are battery separators, comprising the following: a microporous polymeric film; and an optional coating layer on at least one side of the microporous polymeric film, wherein at least one of the microporous polymeric film and the optional coating comprises an additive. The additive is selected from the group consisting of a lubricating agent, a plasticizing agent, a nucleating agent, a shrinkage reducing agent, a surfactant, an SEI improving agent, a cathode protection agent, a flame retardant additive, LiPF6 salt stabilizer, an overcharge protector, an aluminum corrosion inhibitor, a lithium deposition agent or improver, or a solvation enhancer, an aluminum corrosion inhibitor, a wetting agent, and a viscosity improver. Also, described herein are batteries, including lithium-ion batteries, comprising one or more of the described separators. Methods for making the battery separators are also described.
    Type: Grant
    Filed: November 1, 2021
    Date of Patent: March 5, 2024
    Assignee: Celgard, LLC
    Inventors: Changqing Wang Adams, Kang Karen Xiao, Stefan Reinartz, Masaaki Okada, Brian R. Stepp, Yao Lu, Eric Robert White, Katharine Chemelewski
  • Publication number: 20240006719
    Abstract: The present invention relates in at least selected embodiments to novel or improved microporous battery separators for lithium rechargeable batteries and/or related methods of making and/or using such separators. A particular inventive dry process battery separator or membrane separator exhibits a thickness that is less than about 14 ?m and has increased strength performance as defined by reduced splittiness. The mode of splitting failure has been investigated, and the improvement in splittiness quantified by a novel test method known as the Composite Splittiness Index (CSI).
    Type: Application
    Filed: August 14, 2023
    Publication date: January 4, 2024
    Inventors: Xiaomin Zhang, Kang Karen Xiao, Robert A. Nark, Ron E. Smith
  • Publication number: 20230411674
    Abstract: In accordance with at least selected embodiments, a battery separator or separator membrane comprises one or more co-extruded multi-microlayer membranes optionally laminated or adhered to another polymer membrane. The separators described herein may provide improved strength, for example, improved puncture strength, particularly at a certain thickness, and may exhibit improved shutdown and/or a reduced propensity to split.
    Type: Application
    Filed: August 29, 2023
    Publication date: December 21, 2023
    Inventors: Kang Karen Xiao, Eric Joseph Penegar, Takahiko Kondo, Robert Nark, Eric Robert White, Xiaomin Zhang, Kristoffer K. Stokes
  • Patent number: 11784344
    Abstract: In accordance with at least selected embodiments, a battery separator or separator membrane comprises one or more co-extruded multi-microlayer membranes optionally laminated or adhered to another polymer membrane. The separators described herein may provide improved strength, for example, improved puncture strength, particularly at a certain thickness, and may exhibit improved shutdown and/or a reduced propensity to split.
    Type: Grant
    Filed: July 1, 2021
    Date of Patent: October 10, 2023
    Assignee: Celgard, LLC
    Inventors: Kang Karen Xiao, Eric Joseph Penegar, Takahiko Kondo, Robert Nark, Eric Robert White, Xiaomin Zhang, Kristoffer K. Stokes
  • Patent number: 11728546
    Abstract: Several embodiments of a microporous battery separator for lithium rechargeable batteries and/or related methods of making and/or using such separators are disclosed. A dry process battery separator or membrane separator exhibits a thickness that is less than about 14 ?m and has increased strength performance as defined by reduced splittiness. The mode of splitting failure has been investigated, and the improvement in splittiness quantified by a test method known as the Composite Splittiness Index (CSI).
    Type: Grant
    Filed: November 24, 2015
    Date of Patent: August 15, 2023
    Assignee: Celgard, LLC
    Inventors: Xiaomin Zhang, Kang Karen Xiao, Robert A. Nark, Ron E. Smith
  • Publication number: 20230238587
    Abstract: Novel or improved microporous single or multilayer battery separator membranes, separators, batteries including such membranes or separators, methods of making such membranes, separators, and/or batteries, and/or methods of using such membranes, separators and/or batteries are provided. In accordance with at least certain embodiments, a multilayer dry process polyethylene/polypropylene/polyethylene microporous separator which is manufactured using the inventive process which includes machine direction stretching followed by transverse direction stretching and a subsequent calendaring step as a means to reduce the thickness of the multilayer microporous membrane, to reduce the percent porosity of the multilayer microporous membrane in a controlled manner and/or to improve transverse direction tensile strength.
    Type: Application
    Filed: January 27, 2023
    Publication date: July 27, 2023
    Inventors: Kristoffer K. Stokes, William John Mason, Kang Karen Xiao, Xiaomin Zhang, Barry J. Summey, Robert Moran, Jeffrey Gordon Poley, Brian R. Stepp, Changqing Wang Adams, Daniel R. Alexander, Shante P. Williams, Andrew Edward Voss, Douglas George Robertson
  • Publication number: 20230234273
    Abstract: Described herein is a multilayer microporous film or membrane that may exhibit improved properties, including improved dielectric break down and strength, compared to prior monolayer or tri-layer microporous membranes of the same thickness. The preferred multilayer microporous membrane comprises microlayers and one or more lamination barriers. Also disclosed is a battery separator or battery comprising one or more of the multilayer microporous films or membranes. The inventive battery and battery separator is preferably safer and more robust than batteries and battery separators using prior monolayer and tri-layer microporous membranes. Also, described herein is a method for making the multilayer microporous separators, membranes or films described herein.
    Type: Application
    Filed: November 7, 2022
    Publication date: July 27, 2023
    Inventors: Kang Karen Xiao, Eric J. Penegar, Takahiko Kondo, Robert Nark, Eric R. White, Xiaomin Zhang, Kristoffer K. Stokes, Stefan Reinartz, Masaaki Okada
  • Publication number: 20230231273
    Abstract: A multilayer porous membrane with two exterior layers and at least one interior layer. The average pore size of the interior layer is greater than that of either of the two exterior layers. The multilayer porous membrane may be used, for example, as or as part of a battery separator. Compared to prior multilayer porous membranes for battery separators, the multilayer porous membrane herein may exhibit at least one of improved thermal properties, improved anti-metal contamination properties, improved ease of manufacture, and combinations thereof.
    Type: Application
    Filed: June 11, 2021
    Publication date: July 20, 2023
    Inventors: Hisashi Takeda, Kang Karen Xiao, Allen M. Donn, Shinya Hamasaki, Masaki Takahashi
  • Publication number: 20230183531
    Abstract: A polyolefin-containing seam tape is described herein. The polyolefin may be at least one of a homopolymer, copolymer, terpolymer, or a polymer blend of polyethylene, polypropylene, or a combination of the two. The seam tape may be used to form a bonded, reinforced, or waterproofed seam. The seam tape may be used in equipment or apparel that may or may not be recyclable.
    Type: Application
    Filed: April 19, 2021
    Publication date: June 15, 2023
    Inventors: Barry J. Summey, Insik Jeon, Kang Karen Xiao, Eric R. White, Stefan Reinartz
  • Publication number: 20230155253
    Abstract: Disclosed herein is an asymmetric porous membrane having two outer layers and at least one inner layers. The outer layers may be asymmetric in thickness, pore size, porosity, tortuosity, or combinations thereof. In some embodiments, the asymmetric porous membrane has two outer layers and no inner layers. The thickness of one of the outer layers to the other of the outer layers is from 1.1 to 25:1, preferably from 1.1:1 to 10:1, 1.1:1 to 5:1 or 4:1 to 10:1. In some embodiments, both outer layers are PP-containing layers and in some embodiments, one outermost layer may be a PE-containing layer and the other may be a PP-containing layer. The asymmetric porous membrane may be used as or to make a battery separator. In some embodiments, the battery separator may include an asymmetric porous membrane having the thinner of the two outer layers or the layer facing the anode coated with a coating such as a ceramic coating. The battery separator may be used in a liquid electrolyte secondary battery.
    Type: Application
    Filed: April 16, 2021
    Publication date: May 18, 2023
    Inventors: Wenbin Yin, Daniel R. Alexander, Stefan Reinartz, Kang Karen Xiao, Hisashi Takeda, Allen M. Donn
  • Publication number: 20230102962
    Abstract: This application is directed to new and/or improved MD and/or TD stretched and optionally calendered membranes, separators, base films, microporous membranes, battery separators including said separator, base film or membrane, batteries including said separator, and/or methods for making and/or using such membranes, separators, base films, microporous membranes, battery separators and/or batteries. For example, new and/or improved methods for making microporous membranes, and battery separators including the same, that have a better balance of desirable properties than prior microporous membranes and battery separators. The methods disclosed herein comprise the following steps: 1.) obtaining a non-porous membrane precursor; 2.) forming a porous biaxially-stretched membrane precursor from the non-porous membrane precursor; 3.
    Type: Application
    Filed: November 7, 2022
    Publication date: March 30, 2023
    Inventors: Barry J. Summey, Takahiko Kondo, William John Mason, Kang Karen Xiao, Robert Moran, Jeffrey G. Poley, Brian R. Stepp, Kristoffer K. Stokes, Xiaomin Zhang
  • Patent number: 11569549
    Abstract: Novel or improved microporous single or multilayer battery separator membranes, separators, batteries including such membranes or separators, methods of making such membranes, separators, and/or batteries, and/or methods of using such membranes, separators and/or batteries are provided. In accordance with at least certain embodiments, a multilayer dry process polyethylene/polypropylene/polyethylene microporous separator which is manufactured using the inventive process which includes machine direction stretching followed by transverse direction stretching and a subsequent calendering step as a means to reduce the thickness of the multilayer microporous membrane, to reduce the percent porosity of the multilayer microporous membrane in a controlled manner and/or to improve transverse direction tensile strength.
    Type: Grant
    Filed: September 14, 2020
    Date of Patent: January 31, 2023
    Assignee: Celgard, LLC
    Inventors: Kristoffer K. Stokes, William John Mason, Kang Karen Xiao, Xiaomin Zhang, Barry J. Summey, Robert Moran, Jeffrey Gordon Poley, Brian R. Stepp, Changqing Wang Adams, Daniel R. Alexander, Shante P. Williams, Andrew Edward Voss, Douglas George Robertson
  • Patent number: 11495865
    Abstract: Described herein is a multilayer microporous film or membrane that may exhibit improved properties, including improved dielectric break down and strength, compared to prior monolayer or tri-layer microporous membranes of the same thickness. The preferred multilayer microporous membrane comprises microlayers and one or more lamination barriers. Also disclosed is a battery separator or battery comprising one or more of the multilayer microporous films or membranes. The inventive battery and battery separator is preferably safer and more robust than batteries and battery separators using prior monolayer and tri-layer microporous membranes. Also, described herein is a method for making the multilayer microporous separators, membranes or films described herein.
    Type: Grant
    Filed: November 10, 2017
    Date of Patent: November 8, 2022
    Assignee: Celgard, LLC
    Inventors: Kang Karen Xiao, Eric J. Penegar, Takahiko Kondo, Robert Nark, Eric R. White, Xiaomin Zhang, Kristoffer K. Stokes, Stefan Reinartz, Masaaki Okada
  • Publication number: 20220115740
    Abstract: Described herein, are battery separators, comprising the following: a microporous polymeric film; and an optional coating layer on at least one side of the microporous polymeric film, wherein at least one of the microporous polymeric film and the optional coating comprises an additive. The additive is selected from the group consisting of a lubricating agent, a plasticizing agent, a nucleating agent, a shrinkage reducing agent, a surfactant, an SEI improving agent, a cathode protection agent, a flame retardant additive, LiPF6 salt stabilizer, an overcharge protector, an aluminum corrosion inhibitor, a lithium deposition agent or improver, or a solvation enhancer, an aluminum corrosion inhibitor, a wetting agent, and a viscosity improver. Also, described herein are batteries, including lithium-ion batteries, comprising one or more of the described separators. Methods for making the battery separators are also described.
    Type: Application
    Filed: November 1, 2021
    Publication date: April 14, 2022
    Inventors: Changqing Wang Adams, Kang Karen Xiao, Stefan Reinartz, Masaaki Okada, Brian R. Stepp, Yao Lu, Eric Robert White, Katharine Chemelewski
  • Publication number: 20210384587
    Abstract: Disclosed herein are novel or improved microporous battery separator membranes, separators, batteries including such separators, methods of making such membranes, separators, and/or batteries, and/or methods of using such membranes, separators and/or batteries. Further disclosed are laminated multilayer polyolefin membranes with exterior layers comprising one or more polyethylenes, which exterior layers are designed to provide an exterior surface that has a low pin removal force. Further disclosed are battery separator membranes having increased electrolyte absorption capacity at the separator/electrode interface region, which may improve cycling. Further disclosed are battery separator membranes having improved adhesion to any number of coatings. Also described are battery separator membranes having a tunable thermal shutdown where the onset temperature of thermal shutdown may be raised or lowered and the rate of thermal shutdown may be changed or increased.
    Type: Application
    Filed: August 23, 2021
    Publication date: December 9, 2021
    Inventors: Xiaomin Zhang, Eric Robert White, Kang Karen Xiao, Robert A. Nark, Insik Jeon, Kristoffer K. Stokes, Paul Vido, Zhengming Zhang
  • Publication number: 20210376425
    Abstract: In accordance with at least selected embodiments, a battery separator or separator membrane comprises one or more co-extruded multi-microlayer membranes optionally laminated or adhered to another polymer membrane. The separators described herein may provide improved strength, for example, improved puncture strength, particularly at a certain thickness, and may exhibit improved shutdown and/or a reduced propensity to split.
    Type: Application
    Filed: July 1, 2021
    Publication date: December 2, 2021
    Inventors: Kang Karen Xiao, Eric Joseph Penegar, Takahiko Kondo, Robert Nark, Eric Robert White, Xiaomin Zhang, Kristoffer K. Stokes
  • Patent number: 11165121
    Abstract: Described herein, are battery separators, comprising the following: a microporous polymeric film; and an optional coating layer on at least one side of the microporous polymeric film, wherein at least one of the microporous polymeric film and the optional coating comprises an additive. The additive is selected from the group consisting of a lubricating agent, a plasticizing agent, a nucleating agent, a shrinkage reducing agent, a surfactant, an SEI improving agent, a cathode protection agent, a flame retardant additive, LiPF6 salt stabilizer, an overcharge protector, an aluminum corrosion inhibitor, a lithium deposition agent or improver, or a solvation enhancer, an aluminum corrosion inhibitor, a wetting agent, and a viscosity improver. Also, described herein are batteries, including lithium-ion batteries, comprising one or more of the described separators. Methods for making the battery separators are also described.
    Type: Grant
    Filed: November 7, 2017
    Date of Patent: November 2, 2021
    Assignee: Celgard, LLC
    Inventors: Changqing Wang Adams, Kang Karen Xiao, Stefan Reinartz, Masaaki Okada, Brian R. Stepp, Yao Lu, Eric Robert White, Katharine Chemelewski
  • Patent number: 11101525
    Abstract: Disclosed herein are novel or improved microporous battery separator membranes, separators, batteries including such separators, methods of making such membranes, separators, and/or batteries, and/or methods of using such membranes, separators and/or batteries. Further disclosed are laminated multilayer polyolefin membranes with exterior layers comprising one or more polyethylenes, which exterior layers are designed to provide an exterior surface that has a low pin removal force. Further disclosed are battery separator membranes having increased electrolyte absorption capacity at the separator/electrode interface region, which may improve cycling. Further disclosed are battery separator membranes having improved adhesion to any number of coatings. Also described are battery separator membranes having a tunable thermal shutdown where the onset temperature of thermal shutdown may be raised or lowered and the rate of thermal shutdown may be changed or increased.
    Type: Grant
    Filed: July 8, 2019
    Date of Patent: August 24, 2021
    Assignee: Celgard, LLC
    Inventors: Xiaomin Zhang, Eric Robert White, Kang Karen Xiao, Robert A. Nark, Insik Jeon, Kristoffer K. Stokes, Paul Vido, Zhengming Zhang
  • Publication number: 20210257701
    Abstract: A new or improved microporous monolayer, bilayer, trilayer, or multilayer membrane, separator membrane, separator, or coated separator is disclosed. The membrane is preferably made up of at least one resin or polymer and at least one additive. The additive may comprise at least one material that improves adhesion of the microporous membrane to a coating, including a polyaramid-containing coating and a PCS coating, or to a different material such as a metallic surface, including an electrode surface. Improvements in adhesion are based on comparisons to similar microporous membranes without the at least one additive. In some preferred embodiments, the at least one additive may comprise, consist of, or consist essentially of a functionalized polymer or the combination of a functionalized polymer and an elastomer. In some embodiments, the functional group of the functionalized polymer may be maleic anhydride (MAH).
    Type: Application
    Filed: May 10, 2019
    Publication date: August 19, 2021
    Inventors: Kang Karen Xiao, Allen M. Donn, Stefan Reinartz, Changqing Wang Adams, Masaaki Okada, Brian R. Stepp, Eric Robert White, Katharine Chemelewski