Patents by Inventor Kang-Lie Chiang

Kang-Lie Chiang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10770321
    Abstract: Embodiments of the present disclosure provide a method, system, and computer program product for monitoring a service life of a chamber component. In one example, the method includes receiving one or more power measurements of a semiconductor processing chamber from one or more sensors positioned about the semiconductor processing chamber. The processor compares the one or more power measurements to one or more threshold values corresponding to the service life of the chamber component. The processor determines whether the one or more power measurements exceed the threshold values. If the processor determines that the one or more power measurements exceed the threshold values, the processor takes remedial measures for the service life of the chamber component.
    Type: Grant
    Filed: January 4, 2019
    Date of Patent: September 8, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Kang-Lie Chiang, Greg A. Blackburn, Pallavi Zhang, Michael D. Armacost, Nitin Khurana
  • Publication number: 20190148194
    Abstract: Embodiments of the present disclosure provide a method, system, and computer program product for monitoring a service life of a chamber component. In one example, the method includes receiving one or more power measurements of a semiconductor processing chamber from one or more sensors positioned about the semiconductor processing chamber. The processor compares the one or more power measurements to one or more threshold values corresponding to the service life of the chamber component. The processor determines whether the one or more power measurements exceed the threshold values. If the processor determines that the one or more power measurements exceed the threshold values, the processor takes remedial measures for the service life of the chamber component.
    Type: Application
    Filed: January 4, 2019
    Publication date: May 16, 2019
    Inventors: Kang-Lie CHIANG, Greg A. BLACKBURN, Pallavi ZHANG, Michael D. ARMACOST, Nitin KHURANA
  • Patent number: 10177018
    Abstract: Embodiments of the present disclosure provide a method, system, and computer program product for monitoring a service life of a chamber component. In one example, the method includes receiving one or more power measurements of a semiconductor processing chamber from one or more sensors positioned about the semiconductor processing chamber. The processor compares the one or more power measurements to one or more threshold values corresponding to the service life of the chamber component. The processor determines whether the one or more power measurements exceed the threshold values. If the processor determines that the one or more power measurements exceed the threshold values, the processor takes remedial measures for the service life of the chamber component.
    Type: Grant
    Filed: August 10, 2017
    Date of Patent: January 8, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Kang-Lie Chiang, Greg A. Blackburn, Pallavi Zhang, Michael D. Armacost, Nitin Khurana
  • Publication number: 20180047599
    Abstract: Embodiments of the present disclosure provide a method, system, and computer program product for monitoring a service life of a chamber component. In one example, the method includes receiving one or more power measurements of a semiconductor processing chamber from one or more sensors positioned about the semiconductor processing chamber. The processor compares the one or more power measurements to one or more threshold values corresponding to the service life of the chamber component. The processor determines whether the one or more power measurements exceed the threshold values. If the processor determines that the one or more power measurements exceed the threshold values, the processor takes remedial measures for the service life of the chamber component.
    Type: Application
    Filed: August 10, 2017
    Publication date: February 15, 2018
    Inventors: Kang-Lie CHIANG, Greg A. BLACKBURN, Pallavi ZHANG, Michael D. ARMACOST, Nitin KHURANA
  • Patent number: 9281190
    Abstract: Local and global reduction of critical dimension (CD) asymmetry in etch processing is described. In an example, a method of etching a wafer of to form a plurality of staircase structures with reduced local and global asymmetry involves forming a photoresist layer on a plurality of micron-scale semiconductor structures. The photoresist layer is then trimmed with a high pressure and pulsed plasma etch process performed in a reverse MESA mode.
    Type: Grant
    Filed: March 5, 2014
    Date of Patent: March 8, 2016
    Assignee: Applied Materials, Inc.
    Inventors: Kang-lie Chiang, Olivier Luere, Jinhan Choi
  • Publication number: 20140273466
    Abstract: Local and global reduction of critical dimension (CD) asymmetry in etch processing is described. In an example, a method of etching a wafer of to form a plurality of staircase structures with reduced local and global asymmetry involves forming a photoresist layer on a plurality of micron-scale semiconductor structures. The photoresist layer is then trimmed with a high pressure and pulsed plasma etch process performed in a reverse MESA mode.
    Type: Application
    Filed: March 5, 2014
    Publication date: September 18, 2014
    Inventors: Kang-lie Chiang, Olivier Luere, Jinhan Choi
  • Patent number: 7981812
    Abstract: Methods for forming an ultra thin structure using a method that includes multiple cycles of polymer deposition of photoresist (PDP) process and etching process. The embodiments described herein may be advantageously utilized to fabricate a submicron structure on a substrate having a critical dimension less than 55 nm and beyond. In one embodiment, a method of forming a submicron structure on a substrate may include providing a substrate having a patterned photoresist layer disposed on a film stack into an etch chamber, wherein the film stack includes at least a hardmask layer disposed on a dielectric layer, performing a polymer deposition process to deposit a polymer layer on the pattered photoresist layer, thus reducing a critical dimension of an opening in the patterned photoresist layer, and etching the underlying hardmask layer through the opening having the reduced dimension.
    Type: Grant
    Filed: July 3, 2008
    Date of Patent: July 19, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Kang-Lie Chiang, Chia-Ling Kao
  • Publication number: 20090293907
    Abstract: Methods for cleaning a substrate are provided. In one embodiment, the method includes depositing a polymer on a substrate. A cleaning gas is provided to clean a frontside, a bevel edge, and a backside of the substrate. The cleaning gas may include various reactive chemicals such as H2 and N2 in one embodiment. In another embodiment, the cleaning gas may include H2 and H2O. Plasma is initiated from the cleaning gas and used to remove polymer that formed on a bevel edge, backside, or frontside of the substrate during semiconductor processing.
    Type: Application
    Filed: October 6, 2008
    Publication date: December 3, 2009
    Inventors: Nancy Fung, Siyi Li, Ying Rui, Walter R. Merry, Anchel Sheyner, Kathryn Keswick, Shing-Li Sung, Mang-Mang Ling, Chia-Ling Kao, Wei-Te Wu, Kang-Lie Chiang
  • Publication number: 20090035944
    Abstract: Methods for forming an ultra thin structure using a method that includes multiple cycles of polymer deposition of photoresist (PDP) process and etching process. The embodiments described herein may be advantageously utilized to fabricate a submicron structure on a substrate having a critical dimension less than 55 nm and beyond. In one embodiment, a method of forming a submicron structure on a substrate may include providing a substrate having a patterned photoresist layer disposed on a film stack into an etch chamber, wherein the film stack includes at least a hardmask layer disposed on a dielectric layer, performing a polymer deposition process to deposit a polymer layer on the pattered photoresist layer, thus reducing a critical dimension of an opening in the patterned photoresist layer, and etching the underlying hardmask layer through the opening having the reduced dimension.
    Type: Application
    Filed: July 3, 2008
    Publication date: February 5, 2009
    Inventors: Kang-Lie Chiang, Chia-Ling Kao
  • Patent number: 7186943
    Abstract: A plasma reactor for processing a semiconductor workpiece, includes a reactor chamber having a chamber wall and containing a workpiece support for holding the semiconductor support, the electrode comprising a portion of the chamber wall, an RF power generator for supplying power at a frequency of the generator to the overhead electrode and capable of maintaining a plasma within the chamber at a desired plasma ion density level. The overhead electrode has a capacitance such that the overhead electrode and the plasma formed in the chamber at the desired plasma ion density resonate together at an electrode-plasma resonant frequency, the frequency of the generator being at least near the electrode-plasma resonant frequency. The reactor further includes a set of MERIE magnets surrounding the plasma process area overlying the wafer surface that produce a slowly circulating magnetic field which stirs the plasma to improve plasma ion density distribution uniformity.
    Type: Grant
    Filed: April 12, 2005
    Date of Patent: March 6, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Daniel J. Hoffman, Yan Ye, Dan Katz, Douglas A. Buchberger, Jr., Xiaoye Zhao, Kang-Lie Chiang, Robert B. Hagen, Matthew L. Miller
  • Patent number: 7132618
    Abstract: A plasma reactor for processing a semiconductor workpiece, includes reactor chamber having a chamber wall and containing a workpiece support for holding the semiconductor support, the electrode comprising a portion of the chamber wall, an RF power generator for supplying power at a frequency of the generator to the overhead electrode and capable of maintaining a plasma within the chamber at a desired plasma ion density level. The overhead electrode has a capacitance such that the overhead electrode and the plasma formed in the chamber at the desired plasma ion density resonate together at an electrode-plasma resonant frequency, the frequency of the generator being at least near the electrode-plasma resonant frequency. The reactor further includes a set of MERIE magnets surrounding the plasma process area overlying the wafer surface that produce a slowly circulating magnetic field which stirs the plasma to improve plasma ion density distribution uniformity.
    Type: Grant
    Filed: February 6, 2003
    Date of Patent: November 7, 2006
    Assignee: Applied Materials, Inc.
    Inventors: Daniel J. Hoffman, Yan Ye, Dan Katz, Douglas A. Buchberger, Jr., Xiaoye Zhao, Kang-Lie Chiang, Robert B. Hagen, Matthew L. Miller
  • Publication number: 20060102197
    Abstract: A method for removing residue from a layer of conductive material on a substrate is provided herein. In one embodiment, the method includes introducing a process gas into a vacuum chamber having a substrate surface with residue from exposure to a fluorine-containing environment. The process gas includes a hydrogen-containing gas. Optionally, the process gas may further include an oxygen-containing or a nitrogen containing gas. A plasma of the process gas is thereafter maintained in the vacuum chamber for a predetermined period of time to remove the residue from the surface. The temperature of the substrate is maintained at a temperature between about 10 degrees Celsius and about 90 degrees Celsius during the plasma step.
    Type: Application
    Filed: November 16, 2004
    Publication date: May 18, 2006
    Inventors: Kang-Lie Chiang, Man-Ping Cai, Shawming Ma, Yan Ye, Peter Hsieh
  • Patent number: 7030335
    Abstract: A plasma reactor for processing a semiconductor workpiece, includes a reactor chamber having a chamber wall and containing a workpiece support for holding the semiconductor workpiece, an overhead electrode overlying said workpiece support, the electrode comprising a portion of said chamber wall, an RF power generator for supplying power at a frequency of said generator to said overhead electrode and capable of maintaining a plasma within said chamber at a desired plasma ion density level. The overhead electrode has a capacitance such that said overhead electrode and the plasma formed in said chamber at said desired plasma ion density resonate together at an electrode-plasma resonant frequency, said frequency of said generator being at least near said electrode-plasma resonant frequency.
    Type: Grant
    Filed: December 19, 2001
    Date of Patent: April 18, 2006
    Assignee: Applied Materials, Inc.
    Inventors: Daniel J. Hoffman, Gerald Zheyao Yin, Yan Ye, Dan Katz, Douglas A. Buchberger, Jr., Xiaoye Zhao, Kang-Lie Chiang, Robert B. Hagen, Matthew L. Miller
  • Publication number: 20050236377
    Abstract: A plasma reactor for processing a semiconductor workpiece, includes a reactor chamber having a chamber wall and containing a workpiece support for holding the semiconductor support, the electrode comprising a portion of the chamber wall, an RF power generator for supplying power at a frequency of the generator to the overhead electrode and capable of maintaining a plasma within the chamber at a desired plasma ion density level. The overhead electrode has a capacitance such that the overhead electrode and the plasma formed in the chamber at the desired plasma ion density resonate together at an electrode-plasma resonant frequency, the frequency of the generator being at least near the electrode-plasma resonant frequency. The reactor further includes a set of MERIE magnets surrounding the plasma process area overlying the wafer surface that produce a slowly circulating magnetic field which stirs the plasma to improve plasma ion density distribution uniformity.
    Type: Application
    Filed: April 12, 2005
    Publication date: October 27, 2005
    Inventors: Daniel Hoffman, Yan Ye, Dan Katz, Douglas Buchberger, Xiaoye Zhao, Kang-Lie Chiang, Robert Hagen, Matthew Miller
  • Patent number: 6921727
    Abstract: A method of treating a dielectric layer having a low dielectric constant, where the dielectric layer has been processed in a manner that causes a change in the dielectric constant of an affected region of the layer. The treatment of the affected region may comprise etching, sputtering, annealing, or combinations thereof. The treatment returns the dielectric constant of the dielectric layer to substantially the dielectric constant that existed before processing.
    Type: Grant
    Filed: March 11, 2003
    Date of Patent: July 26, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Kang-Lie Chiang, Mahmoud Dahimene, Xiaoye Zhao, Yan Ye, Gerardo A. Delgadino, Hoiman Hung, Li-Qun Xia, Giuseppina R. Conti
  • Patent number: 6900596
    Abstract: A plasma reactor for processing a semiconductor wafer includes a side wall and an overhead ceiling defining a chamber, a workpiece support cathode within the chamber having a working surface facing the ceiling for supporting a semiconductor workpiece, process gas inlets for introducing a process gas into the chamber and an RF bias power generator having a bias power frequency. There is a bias power feed point at the working surface and an RF conductor is connected between the RF bias power generator and the bias power feed point at the working surface. A dielectric sleeve surrounds a portion of the RF conductor, the sleeve having an axial length along the RF conductor, a dielectric constant and an axial location along the RF conductor, the length, dielectric constant and location of the sleeve being such that the sleeve provides a reactance that enhances plasma ion density uniformity over the working surface.
    Type: Grant
    Filed: September 4, 2002
    Date of Patent: May 31, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Jang Gyoo Yang, Daniel J. Hoffman, James D. Carducci, Douglas A. Buchberger, Jr., Melissa Hagen, Matthew L. Miller, Kang-Lie Chiang, Gerardo A. Delgadino, Robert B. Hagen
  • Patent number: 6894245
    Abstract: A plasma reactor for processing a semiconductor workpiece, includes a reactor chamber having a chamber wall and containing a workpiece support for holding the semiconductor support, the electrode comprising a portion of the chamber wall, an RF power generator for supplying power at a frequency of the generator to the overhead electrode and capable of maintaining a plasma within the chamber at a desired plasma ion density level. The overhead electrode has a capacitance such that the overhead electrode and the plasma formed in the chamber at the desired plasma ion density resonate together at an electrode-plasma resonant frequency, the frequency of the generator being at least near the electrode-plasma resonant frequency. The reactor further includes a set of MERIE magnets surrounding the plasma process area overlying the wafer surface that produce a slowly circulating magnetic field which stirs the plasma to improve plasma ion density distribution uniformity.
    Type: Grant
    Filed: October 22, 2001
    Date of Patent: May 17, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Daniel J. Hoffman, Yan Ye, Dan Katz, Douglas A. Buchberger, Jr., Xiaoye Zhao, Kang-Lie Chiang, Robert B. Hagen, Matthew L. Miller
  • Publication number: 20040211759
    Abstract: A plasma reactor for processing a semiconductor workpiece, includes a reactor chamber having a chamber wall and containing a workpiece support for holding the semiconductor support, the electrode comprising a portion of the chamber wall, an RF power generator for supplying power at a frequency of the generator to the overhead electrode and capable of maintaining a plasma within the chamber at a desired plasma ion density level. The overhead electrode has a capacitance such that the overhead electrode and the plasma formed in the chamber at the desired plasma ion density resonate together at an electrode-plasma resonant frequency, the frequency of the generator being at least near the electrode-plasma resonant frequency. The reactor further includes a set of MERIE magnets surrounding the plasma process area overlying the wafer surface that produce a slowly circulating magnetic field which stirs the plasma to improve plasma ion density distribution uniformity.
    Type: Application
    Filed: October 22, 2001
    Publication date: October 28, 2004
    Applicant: Applied Materials, Inc.
    Inventors: Daniel J. Hoffman, Yan Ye, Dan Katz, Douglas A. Buchberger, Xiaoye Zhao, Kang-Lie Chiang, Robert B. Hagen, Matthew L. Miller
  • Publication number: 20040180556
    Abstract: A method of treating a dielectric layer having a low dielectric constant, where the dielectric layer has been processed in a manner that causes a change in the dielectric constant of an affected region of the layer. The treatment of the affected region may comprise etching, sputtering, annealing, or combinations thereof. The treatment returns the dielectric constant of the dielectric layer to substantially the dielectric constant that existed before processing.
    Type: Application
    Filed: March 11, 2003
    Publication date: September 16, 2004
    Applicant: Applied Materials, Inc.
    Inventors: Kang-Lie Chiang, Mahmoud Dahimene, Xiaoye Zhao, Yan Ye, Gerardo A. Delgadino, Hoiman Hung, Li-Qun Xia, Giuseppina R. Conti
  • Patent number: 6749770
    Abstract: A method of etching a platinum electrode layer disposed on a substrate to produce a semiconductor device including a plurality of platinum electrodes. The method comprises heating the substrate to a temperature greater than about 150° C., and etching the platinum electrode layer by employing a plasma of an etchant gas comprising nitrogen and a halogen (e.g. chlorine), and a gas selected from the group consisting of a noble gas (e.g. argon), BCl3, HBr, SiCl4 and mixtures thereof. The substrate may be heated in a reactor chamber having a dielectric window including a deposit-receiving surface having a surface finish comprising a peak-to-valley roughness height with an average height value of greater than about 1000 Å.
    Type: Grant
    Filed: September 5, 2001
    Date of Patent: June 15, 2004
    Inventors: Jeng H. Hwang, Chentsau Ying, Kang-Lie Chiang, Steve S. Y. Mak