Patents by Inventor Kanta ABE

Kanta ABE has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10069076
    Abstract: A light-emitting element having a long lifetime is provided. A light-emitting element exhibiting high emission efficiency in a high luminance region is provided. A light-emitting element includes a light-emitting layer between a pair of electrodes. The light-emitting layer contains a first organic compound, a second organic compound, and a phosphorescent compound. The first organic compound is represented by a general formula (G0). The molecular weight of the first organic compound is greater than or equal to 500 and less than or equal to 2000. The second organic compound is a compound having an electron-transport property. In the general formula (G0), Ar1 and Ar2 each independently represent a fluorenyl group, a spirofluorenyl group, or a biphenyl group, and Ar3 represents a substituent including a carbazole skeleton.
    Type: Grant
    Filed: August 4, 2016
    Date of Patent: September 4, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Takao Hamada, Hiromi Seo, Kanta Abe, Kyoko Takeda, Satoshi Seo
  • Publication number: 20180138416
    Abstract: A light-emitting element with a lower voltage and higher emission efficiency is provided. The light-emitting element includes a first organic compound, a second organic compound, and a guest material. The LUMO level of the first organic compound is lower than the LUMO level of the second organic compound, and a difference between them is larger than 0 eV and smaller than or equal to 0.5 eV. Furthermore, the HOMO level of the first organic compound is lower than the HOMO level of the second organic compound. The guest material has a function of converting triplet excitation energy into light emission. The first organic compound and the second organic compound form an exciplex.
    Type: Application
    Filed: November 14, 2017
    Publication date: May 17, 2018
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Satoshi Seo, Tatsuyoshi TAKAHASHI, Kyoko TAKEDA, Kanta ABE, Hiroki SUZUKI
  • Publication number: 20160343942
    Abstract: A light-emitting element having a long lifetime is provided. A light-emitting element exhibiting high emission efficiency in a high luminance region is provided. A light-emitting element includes a light-emitting layer between a pair of electrodes. The light-emitting layer contains a first organic compound, a second organic compound, and a phosphorescent compound. The first organic compound is represented by a general formula (G0). The molecular weight of the first organic compound is greater than or equal to 500 and less than or equal to 2000. The second organic compound is a compound having an electron-transport property. In the general formula (G0), Ar1 and Ar2 each independently represent a fluorenyl group, a spirofluorenyl group, or a biphenyl group, and Ar3 represents a substituent including a carbazole skeleton.
    Type: Application
    Filed: August 4, 2016
    Publication date: November 24, 2016
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Takao HAMADA, Hiromi SEO, Kanta ABE, Kyoko TAKEDA, Satoshi SEO
  • Publication number: 20160343952
    Abstract: A novel organic compound having a high hole-transport property is provided. A long-lifetime light-emitting element is provided. An organic compound represented by General Formula (G0) is provided. In General Formula (G0), Ar1 represents a substituted or unsubstituted naphthyl group, Ar2 represents a substituted or unsubstituted carbazolyl group, Ar3 represents a substituted or unsubstituted fluorenyl group or a substituted or unsubstituted spirofluorenyl group, and ?1 and ?2 each independently represent a substituted or unsubstituted phenylene group or a substituted or unsubstituted biphenyldiyl group.
    Type: Application
    Filed: August 8, 2016
    Publication date: November 24, 2016
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: SATOKO SHITAGAKI, TAKAO HAMADA, KANTA ABE, SATOSHI SEO
  • Patent number: 9419237
    Abstract: A novel organic compound having a high hole-transport property is provided. A long-lifetime light-emitting element is provided. An organic compound represented by General Formula (G0) is provided. In General Formula (G0), Ar1 represents a substituted or unsubstituted naphthyl group, Ar2 represents a substituted or unsubstituted carbazolyl group, Ar3 represents a substituted or unsubstituted fluorenyl group or a substituted or unsubstituted spirofluorenyl group, and ?1 and ?2 each independently represent a substituted or unsubstituted phenylene group or a substituted or unsubstituted biphenyldiyl group.
    Type: Grant
    Filed: August 1, 2013
    Date of Patent: August 16, 2016
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Satoko Shitagaki, Takao Hamada, Kanta Abe, Satoshi Seo
  • Patent number: 9412962
    Abstract: A light-emitting element having a long lifetime is provided. A light-emitting element exhibiting high emission efficiency in a high luminance region is provided. A light-emitting element includes a light-emitting layer between a pair of electrodes. The light-emitting layer contains a first organic compound, a second organic compound, and a phosphorescent compound. The first organic compound is represented by a general formula (G0). The molecular weight of the first organic compound is greater than or equal to 500 and less than or equal to 2000. The second organic compound is a compound having an electron-transport property. In the general formula (G0), Ar1 and Ar2 each independently represent a fluorenyl group, a spirofluorenyl group, or a biphenyl group, and Ar3 represents a substituent including a carbazole skeleton.
    Type: Grant
    Filed: August 1, 2013
    Date of Patent: August 9, 2016
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Takao Hamada, Hiromi Seo, Kanta Abe, Kyoko Takeda, Satoshi Seo
  • Patent number: 9401396
    Abstract: Provided is a method for manufacturing a semiconductor device, in which a degradation of characteristics of a thin film transistor can be suppressed by performing plasma oxidation treatment on a gate insulating film containing nitrogen. An embodiment of the present invention is a method for manufacturing a semiconductor device comprising a thin film transistor including a gate electrode, a gate insulating film containing nitrogen, and a channel region in microcrystalline semiconductor films. The method includes the steps of performing plasma treatment on the gate insulating film in an oxidizing gas atmosphere containing hydrogen and an oxidizing gas containing an oxygen atom, and forming the microcrystalline semiconductor film over the gate insulating film. Formula (1), a/b?2, and Formula (2), b>0, are satisfied, where the amount of hydrogen and the amount of the oxidizing gas in the oxidizing gas atmosphere are a and b, respectively.
    Type: Grant
    Filed: March 29, 2012
    Date of Patent: July 26, 2016
    Assignees: Semiconductor Energy Laboratory Co., Ltd., Sharp Kabushiki Kaisha
    Inventors: Kanta Abe, Hidekazu Miyairi, Tetsuhiro Tanaka, Takashi Ienaga, Yoshitaka Yamamoto
  • Patent number: 9159781
    Abstract: Provided is a method for manufacturing a semiconductor device, in which a degradation of characteristics of a thin film transistor can be suppressed by performing plasma oxidation treatment on a gate insulating film containing nitrogen. An embodiment of the present invention is a method for manufacturing a semiconductor device comprising a thin film transistor including a gate electrode, a gate insulating film containing nitrogen, and a channel region in microcrystalline semiconductor films. The method includes the steps of performing plasma treatment on the gate insulating film in an oxidizing gas atmosphere containing hydrogen and an oxidizing gas containing an oxygen atom, and forming the microcrystalline semiconductor film over the gate insulating film. Formula (1), a/b?2, and Formula (2), b>0, are satisfied, where the amount of hydrogen and the amount of the oxidizing gas in the oxidizing gas atmosphere are a and b, respectively.
    Type: Grant
    Filed: March 29, 2012
    Date of Patent: October 13, 2015
    Assignees: Semiconductor Energy Laboratory Co., Ltd., Sharp Kabushiki Kaisha
    Inventors: Kanta Abe, Hidekazu Miyairi, Tetsuhiro Tanaka, Takashi Ienaga, Yoshitaka Yamamoto
  • Publication number: 20140034928
    Abstract: A novel organic compound having a high hole-transport property is provided. A long-lifetime light-emitting element is provided. An organic compound represented by General Formula (G0) is provided. In General Formula (G0), Ar1 represents a substituted or unsubstituted naphthyl group, Ar2 represents a substituted or unsubstituted carbazolyl group, Ar3 represents a substituted or unsubstituted fluorenyl group or a substituted or unsubstituted spirofluorenyl group, and ?1 and ?2 each independently represent a substituted or unsubstituted phenylene group or a substituted or unsubstituted biphenyldiyl group.
    Type: Application
    Filed: August 1, 2013
    Publication date: February 6, 2014
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Satoko Shitagaki, Takao Hamada, Kanta Abe, Satoshi Seo
  • Publication number: 20140034929
    Abstract: A light-emitting element having a long lifetime is provided. A light-emitting element exhibiting high emission efficiency in a high luminance region is provided. A light-emitting element includes a light-emitting layer between a pair of electrodes. The light-emitting layer contains a first organic compound, a second organic compound, and a phosphorescent compound. The first organic compound is represented by a general formula (G0). The molecular weight of the first organic compound is greater than or equal to 500 and less than or equal to 2000. The second organic compound is a compound having an electron-transport property. In the general formula (G0), Ar1 and Ar2 each independently represent a fluorenyl group, a spirofluorenyl group, or a biphenyl group, and Ar3 represents a substituent including a carbazole skeleton.
    Type: Application
    Filed: August 1, 2013
    Publication date: February 6, 2014
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Takao Hamada, Hiromi Seo, Kanta Abe, Kyoko Takeda, Satoshi Seo
  • Publication number: 20120270383
    Abstract: Provided is a method for manufacturing a semiconductor device, in which a degradation of characteristics of a thin film transistor can be suppressed by performing plasma oxidation treatment on a gate insulating film containing nitrogen. An embodiment of the present invention is a method for manufacturing a semiconductor device comprising a thin film transistor including a gate electrode, a gate insulating film containing nitrogen, and a channel region in microcrystalline semiconductor films. The method includes the steps of performing plasma treatment on the gate insulating film in an oxidizing gas atmosphere containing hydrogen and an oxidizing gas containing an oxygen atom, and forming the microcrystalline semiconductor film over the gate insulating film. Formula (1), a/b?2, and Formula (2), b>0, are satisfied, where the amount of hydrogen and the amount of the oxidizing gas in the oxidizing gas atmosphere are a and b, respectively.
    Type: Application
    Filed: March 29, 2012
    Publication date: October 25, 2012
    Applicants: SHARP KABUSHIKI KAISHA, SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Kanta ABE, Hidekazu MIYAIRI, Tetsuhiro TANAKA, Takashi IENAGA, Yoshitaka YAMAMOTO