Patents by Inventor Kaori Kawano
Kaori Kawano has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 10538823Abstract: A high-strength steel sheet has a chemical composition comprising C: 0.05-0.20%, Si: 0.02-3.0%, Mn: 0.5-3.0%, P: at most 0.5%, S: at most 0.05%, Cr: 0.05-1.0%, sol. Al: 0.01-1.0%, one or more elements selected from the group consisting of Ti, Nb, Mo, V, and W: a total of 0.002-0.03%, and a remainder of Fe and impurities. The sheet has an average grain diameter of ferrite of at most 3.0 ?m at least in a region of 100-200 ?m in the sheet thickness direction from the surface of the steel sheet. The average spacing in the sheet thickness direction of the remaining structure in this region is at most 3.0 ?m. Mechanical properties include at least 750 MPa tensile strength and at least 13,000 MPa·% (tensile strength×elongation).Type: GrantFiled: May 27, 2010Date of Patent: January 21, 2020Assignee: NIPPON STEEL CORPORATIONInventors: Yasuaki Tanaka, Toshiro Tomida, Kaori Kawano
-
Patent number: 10407758Abstract: A steel for oil country tubular goods includes, as a chemical composition, by mass %, C, Si, Mn, Al, Mo, P, S, O, N, and a balance containing Fe and impurities, wherein a full width at half maximum HW of a crystal plane corresponding to a (211) crystal plane of an ? phase and a carbon content expressed in mass % in the chemical composition satisfy HW×C1/2?0.38, the carbon content and a molybdenum content expressed in mass % in the chemical composition satisfy C×Mo?0.6, a number of M2C carbides having a hexagonal crystal structure and having an equivalent circle diameter of 1 nm or more is 5 pieces or more per one square micron, and an yield strength is 758 MPa or more.Type: GrantFiled: June 17, 2013Date of Patent: September 10, 2019Assignee: NIPPON STEEL CORPORATIONInventors: Tomohiko Omura, Yuji Arai, Kaori Kawano, Akihiro Sakamoto, Kazuo Okamura, Kenji Yamamoto, Keiichi Kondo, Koji Nagahashi, Masanao Seo
-
Patent number: 10378090Abstract: A steel material comprising, by mass%, C: greater than 0.05% to 0.2%, Mn: 1% to 3%, Si: greater than 0.5% to 1.8%, Al: 0.01% to 0.5%, N: 0.001% to 0.015%, Ti or a sum of V and Ti: greater than 0.1% to 0.25%, Ti: 0.001% or more, Cr: 0% to 0.25%, Mo: 0% to 0.35%, the balance: Fe and impurities, comprising a multi-phase structure having a ferrite main phase and a second phase containing one or more of bainite, martensite and austenite, wherein an average nanohardness of the second phase is less than 6.0 GPa, an average grain diameter of all crystal grains in the main phase and the second phase is 3 ?m or less, and a proportion of a length of small-angle grain boundaries where the misorientation is 2° to less than 15° in a length of all grain boundaries is 15% or more.Type: GrantFiled: July 22, 2013Date of Patent: August 13, 2019Assignee: NIPPON STEEL CORPORATIONInventors: Kaori Kawano, Masahito Tasaka, Yoshiaki Nakazawa, Yasuaki Tanaka, Toshiro Tomida
-
Multi-phase hot-rolled steel sheet having improved dynamic strength and a method for its manufacture
Patent number: 10041158Abstract: A multi-phase hot-rolled steel sheet having improved strength in an intermediate strain rate region has a chemical composition comprising, in mass percent, C: 0.07-0.2%, Si+Al: 0.3-1.5%, Mn: 1.0-3.0%, P: at most 0.02%, S: at most 0.005%, Cr: 0.1-0.5%, N: 0.001-0.008%, at least one of Ti: 0.002-0.05% and Nb: 0.002-0.05%, and a remainder of Fe and impurities. The area fraction of ferrite is 7-35%, the grain diameter of ferrite is in the range of 0.5-3.0 ?m, and the nanohardness of ferrite is in the range of 3.5-4.5 GPa. A second phase which is the remainder other than ferrite contains martensite and bainitic ferrite and/or bainite. The average nanohardness of the second phase is 5-12 GPa, and the second phase contains a high-hardness phase of 8-12 GPa with an area fraction of 5-35% based on the overall structure.Type: GrantFiled: April 7, 2011Date of Patent: August 7, 2018Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATIONInventors: Yasuaki Tanaka, Toshiro Tomida, Kaori Kawano -
Patent number: 9994942Abstract: A steel material contains: by mass %, C: greater than 0.05% to 0.18%; Mn: 1% to 3%; Si: greater than 0.5% to 1.8%; Al: 0.01% to 0.5%; N: 0.001% to 0.015%; one or both of V and Ti: 0.01% to 0.3% in total; Cr: 0% to 0.25%; Mo: 0% to 0.35%; a balance: Fe and impurities; and 80% or more of bainite by area %, and 5% or more in total of one or two or more selected from a group consisting of ferrite, martensite and austenite by area %, in which an average block size of the above-described bainite is less than 2.0 ?m, an average grain diameter of all of the above-described ferrite, martensite and austenite is less than 1.0 ?m, an average nanohardness of the above-described bainite is 4.0 GPa to 5.0 GPa, and MX-type carbides each having a circle-equivalent diameter of 10 nm or more exist with an average grain spacing of 300 nm or less therebetween.Type: GrantFiled: August 21, 2013Date of Patent: June 12, 2018Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATIONInventors: Kaori Kawano, Yasuaki Tanaka, Masahito Tasaka, Yoshiaki Nakazawa, Toshiro Tomida
-
Publication number: 20180135154Abstract: The low alloy steel for oil country tubular goods according to the present invention has a chemical composition containing, by mass percent, C: 0.56 to 1.00%, Si: 0.05 to 0.50%, Mn: 0.05 to 1.00%, P: at most 0.025%, 5: at most 0.010%, Al: 0.005 to 0.100%, Mo: 0.40 to 1.00%, V: 0.05 to 0.30%, and O: at most 0.010%, the balance being Fe and impurities, wherein the yield stress thereof is at least 862 MPa, and the half-value width of a [211] crystal surface obtained by X-ray diffraction is at most 0.50°.Type: ApplicationFiled: January 10, 2018Publication date: May 17, 2018Inventors: Tomohiko OMURA, Yuji ARAI, Kaori KAWANO, Akihiro SAKAMOTO, Kazuo OKAMURA, Kenji YAMAMOTO, Keiichi KONDO
-
Patent number: 9970073Abstract: A multi-phase hot-rolled steel sheet has a metallurgical structure having a main phase of ferrite with an average grain diameter of at most 3.0 ?m and a second phase including at least one of martensite, bainite, and austenite. In the surface layer, the average grain diameter of the second phase is at most 2.0 ?m, the difference (?nHav) between the average nanohardness of the main phase (nH?av) and the average nanohardness of the second phase (nH2nd av) is 6.0-10.0 GPa, the difference (??nH) of the standard deviation of the nanohardness of the second phase from the standard deviation of the nanohardness of the main phase is at most 1.5 GPa, and in the central portion, the difference (?nHav) between the average nanohardnesses is at least 3.5 GPa to at most 6.0 GPa and the difference (??nH) between the standard deviations of the nanohardnesses is at least 1.5 GPa.Type: GrantFiled: October 18, 2010Date of Patent: May 15, 2018Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATIONInventors: Kaori Kawano, Yasuaki Tanaka, Toshiro Tomida
-
Patent number: 9909198Abstract: The low alloy steel for oil country tubular goods according to the present invention has a chemical composition containing, by mass percent, C: 0.56 to 1.00%, Si: 0.05 to 0.50%, Mn: 0.05 to 1.00%, P: at most 0.025%, S: at most 0.010%, Al: 0.005 to 0.100%, Mo: 0.40 to 1.00%, V: 0.05 to 0.30%, and O: at most 0.010%, the balance being Fe and impurities, wherein the yield stress thereof is at least 862 MPa, and the half-value width of a [211] crystal surface obtained by X-ray diffraction is at most 0.50°.Type: GrantFiled: November 5, 2012Date of Patent: March 6, 2018Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATIONInventors: Tomohiko Omura, Yuji Arai, Kaori Kawano, Akihiro Sakamoto, Kazuo Okamura, Kenji Yamamoto, Keiichi Kondo
-
Patent number: 9862428Abstract: The steel material for an impact absorbing member has a composition containing: by mass %, C: 0.05 to 0.18%, Mn: 1 to 3%, Si+Al: at least 0.5% and less than 2.5%, and N: 0.001 to 0.015%, and in some cases, Cr: at most 0.5%, Mo: at most 0.2%, Ti: at most 0.05%, Nb: at most 0.05%, V: at most 0.2%, and B: at most 0.002%, the remainder being Fe and impurities. The steel material structure contains at least 70% by area of bainite made up of a lath structure having an average interval of at most 1 mm and martensite, 5 to 30%, and satisfies Formulas (1) and (2): (1) 1.2 £ HM0/HB0 £ 1.6, (2) 0.90 £ {(HM10/HM0)/(HB10/HB0) £ 1.3, where HM0 and HM10 represent average nano hardness in an initial state and after 10% tensile deformation of the martensite, and HB0 and HB0 represent that of bainite, respectively.Type: GrantFiled: December 6, 2012Date of Patent: January 9, 2018Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATIONInventors: Kaori Kawano, Masahito Tasaka, Yoshiaki Nakazawa, Yasuaki Tanaka, Toshiro Tomida
-
Patent number: 9809874Abstract: A steel sheet suitable as a starting material for a vehicle impact absorbing member with high absorption of impact energy and resistance to cracking contains, by mass %, C: 0.08-0.30%, Mn: 1.5-3.5%; Si+Al: 0.50-3.0%, P: 0.10% or less, S: at most 0.010%, and N: at most 0.010%, and optionally, one or more types selected from Cr: at most 0.5%, Mo: at most 0.5% , B: at most 0.010%, Ti: less than 0.04%, Nb: less than 0.030%, V: less than 0.5%, Ca: at most 0.010%, Mg: at most 0.010%, REM: at most 0.050%, and Bi: at most 0.050%. The microstructure contains, by area %, bainite: more than 50%, martensite: 3-30%, and retained austenite: 3-15%, the remainder comprising ferrite having an average grain diameter of less than 5 mm. The product of uniform elongation and hole expansion ratio is at least 300%2 and 5% effective flow stress is at least 900 MPa.Type: GrantFiled: April 8, 2013Date of Patent: November 7, 2017Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATIONInventors: Yasuaki Tanaka, Kaori Kawano, Masahito Tasaka, Yoshiaki Nakazawa, Takuya Nishio, Masayuki Wakita, Jun Haga, Toshiro Tomida
-
Publication number: 20150344996Abstract: The steel material for an impact absorbing member has a composition containing: by mass %, C: 0.05 to 0.18%, Mn: 1 to 3%, Si+Al: at least 0.5% and less than 2.5%, and N: 0.001 to 0.015%, and in some cases, Cr: at most 0.5%, Mo: at most 0.2%, Ti: at most 0.05%, Nb: at most 0.05%, V: at most 0.2%, and B: at most 0.002%, the remainder being Fe and impurities. The steel material structure contains at least 70% by area of bainite made up of a lath structure having an average interval of at most 1 mm and martensite, 5 to 30%, and satisfies Formulas (1) and (2): (1) 1.2 £ HM0/HB0 £ 1.6, (2) 0.90 £ {(HM10/HM0)/(HB10/HB0) £ 1.3, where HM0 and HM10 represent average nano hardness in an initial state and after 10% tensile deformation of the martensite, and HB0 and HB0 represent that of bainite, respectively.Type: ApplicationFiled: December 6, 2012Publication date: December 3, 2015Inventors: Kaori KAWANO, Masahito TASAKA, Yoshiaki NAKAZAWA, Yasuaki TANAKA, Toshiro TOMIDA
-
Publication number: 20150247226Abstract: The low alloy steel for oil country tubular goods according to the present invention has a chemical composition containing, by mass percent, C: 0.56 to 1.00%, Si: 0.05 to 0.50%, Mn: 0.05 to 1.00%, P: at most 0.025%, S: at most 0.010%, Al: 0.005 to 0.100%, Mo: 0.40 to 1.00%, V: 0.05 to 0.30%, and O: at most 0.010%, the balance being Fe and impurities, wherein the yield stress thereof is at least 862 MPa, and the half-value width of a [211] crystal surface obtained by X-ray diffraction is at most 0.50°.Type: ApplicationFiled: November 5, 2012Publication date: September 3, 2015Inventors: Tomohiko Omura, Yuji Arai, Kaori Kawano, Akihiro Sakamoto, Kazuo Okamura, Kenji Yamamoto, Keiichi Kondo
-
Patent number: 9034118Abstract: A method for manufacturing a hot-rolled sheet attains grain refinement of the steel sheet whose grain size is extremely fine. In particular, a ferrite grain size of less than average 2 ?m is obtained, which is not laminar but has ferrite grains with equiaxed morphology and exhibits high formability in forming. The method comprises the steps of rolling and cooling, wherein the rolling reductions, cooling steps, and temperature are closely regulated. A hot rolled sheet made from the method of manufacturing has a controlled ferrite grain in different regions of sheet thickness.Type: GrantFiled: March 11, 2013Date of Patent: May 19, 2015Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATIONInventors: Suguhiro Fukushima, Manabu Eto, Tamotsu Sasaki, Kaori Kawano, Masayuki Wakita
-
Publication number: 20150114527Abstract: A steel for oil country tubular goods includes, as a chemical composition, by mass %, C, Si, Mn, Al, Mo, P, S, O, N, and a balance containing Fe and impurities, wherein a full width at half maximum HW of a crystal plane corresponding to a (211) crystal plane of an ? phase and a carbon content expressed in mass % in the chemical composition satisfy HW×C1/2?0.38, the carbon content and a molybdenum content expressed in mass % in the chemical composition satisfy C×Mo?0.6, a number of M2C carbides having a hexagonal crystal structure and having an equivalent circle diameter of 1 nm or more is 5 pieces or more per one square micron, and an yield strength is 758 MPa or more.Type: ApplicationFiled: June 17, 2013Publication date: April 30, 2015Inventors: Tomohiko Omura, Yuji Arai, Kaori Kawano, Akihiro Sakamoto, Kazuo Okamura, Kenji Yamamoto, Keiichi Kondo, Koji Nagahashi, Masanao Seo
-
Publication number: 20150098857Abstract: A steel material contains: by mass %, C: greater than 0.05% to 0.18%; Mn: 1% to 3%; Si: greater than 0.5% to 1.8%; Al: 0.01% to 0.5%; N: 0.001% to 0.015%; one or both of V and Ti: 0.01% to 0.3% in total; Cr: 0% to 0.25%; Mo: 0% to 0.35%; a balance: Fe and impurities; and 80% or more of bainite by area %, and 5% or more in total of one or two or more selected from a group consisting of ferrite, martensite and austenite by area %, in which an average block size of the above-described bainite is less than 2.0 ?m, an average grain diameter of all of the above-described ferrite, martensite and austenite is less than 1.0 ?m, an average nanohardness of the above-described bainite is 4.0 GPa to 5.0 GPa, and MX-type carbides each having a circle-equivalent diameter of 10 nm or more exist with an average grain spacing of 300 nm or less therebetween.Type: ApplicationFiled: August 21, 2013Publication date: April 9, 2015Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATIONInventors: Kaori Kawano, Yasuaki Tanaka, Masahito Tasaka, Yoshiaki Nakazawa, Toshiro Tomida
-
Publication number: 20150075680Abstract: A steel sheet suitable as a starting material for a vehicle impact absorbing member with high absorption of impact energy and resistance to cracking contains, by mass %, C: 0.08-0.30%, Mn: 1.5-3.5%; Si+Al: 0.50-3.0%, P: 0.10% or less, S: at most 0.010%, and N: at most 0.010%, and optionally, one or more types selected from Cr: at most 0.5%, Mo: at most 0.5%, B: at most 0.010%, Ti: less than 0.04%, Nb: less than 0.030%, V: less than 0.5%, Ca: at most 0.010%, Mg: at most 0.010%, REM: at most 0.050%, and Bi: at most 0.050%. The microstructure contains, by area %, bainite: more than 50%, martensite: 3-30%, and retained austenite: 3-15%, the remainder comprising ferrite having an average grain diameter of less than 5 mm. The product of uniform elongation and hole expansion ratio is at least 300%2 and 5% effective flow stress is at least 900 MPa.Type: ApplicationFiled: April 8, 2013Publication date: March 19, 2015Inventors: Yasuaki Tanaka, Kaori Kawano, Masahito Tasaka, Yoshiaki Nakazawa, Takuya Nishio, Masayuki Wakita, Jun Haga, Toshiro Tomida
-
Publication number: 20150071812Abstract: A steel material having a chemical composition of, by mass %, C: greater than 0.05% to 0.2%, Mn: 1% to 3%, Si: greater than 0.5% to 1.8%, Al: 0.01% to 0.5%, N: 0.001% to 0.015%, Ti or a sum of V and Ti: greater than 0.1% to 0.25%, Ti: 0.001% or more, Cr: 0% to 0.25%, Mo: 0% to 0.35%, and a balance: Fe and impurities, includes a steel structure being a multi-phase structure having a main phase made of ferrite of 50 area % or more, and a second phase containing one or two or more selected from a group consisting of bainite, martensite and austenite, in which an average nanohardness of the above-described second phase is less than 6.Type: ApplicationFiled: July 22, 2013Publication date: March 12, 2015Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATIONInventors: Kaori Kawano, Masahito Tasaka, Yoshiaki Nakazawa, Yasuaki Tanaka, Toshiro Tomida
-
Publication number: 20150047749Abstract: A low alloy steel subjected to post weld heat treatment, containing, by mass percent, of C: 0.01 to 0.15%, Si: 3% or less, Mn: 3% or less, and Al: 0.08% or less, one or more kinds of elements selected from Ti, V and Nb: the range satisfying Formula (1), and the balance being Fe and impurities, wherein in the impurities, N: 0.01% or less, P: 0.05% or less, S: 0.03% or less, and O: 0.03% or less: 0.1×[C(%)]?[Ti(%)]+[V(%)]+0.5×[Nb(%)]?0.2??(1) where, the symbol of element in the formula represents the content (mass %) of each element. In the alloy steel, a HAZ subjected to PWHT, especially short-time PWHT, has excellent hydrogen embrittlement resistance in wet hydrogen sulfide environments or the like.Type: ApplicationFiled: December 17, 2012Publication date: February 19, 2015Inventors: Hiroyuki Hirata, Tomohiko Omura, Kenji Kobayashi, Kaori Kawano, Kota Tomatsu, Kazuhiro Ogawa
-
Publication number: 20140348695Abstract: A low alloy steel, containing, by mass percent, C: 0.01 to 0.15%, Si: 3% or less, Mn: 3% or less, B: 0.005 to 0.050%, and Al: 0.08% or less, and the balance being Fe and impurities, wherein in the impurities, N: 0.01% or less, P: 0.05% or less, S: 0.03% or less, and O: 0.03% or less. In the alloy steel, a HAZ has excellent resistance to embrittlement attributable to hydrogen such as stress corrosion cracking in wet hydrogen sulfide environments.Type: ApplicationFiled: December 17, 2012Publication date: November 27, 2014Inventors: Hiroyuki Hirata, Kenji Kobayashi, Tomohiko Omura, Kaori Kawano, Kota Tomatsu, Kazuhiro Ogawa
-
Publication number: 20140182414Abstract: There is provided an induction hardening steel excellent in quenching crack resistance. The induction hardening steel of the present embodiment includes, by mass percent, C: 0.35 to 0.6%, Si: at least 0.01% and less than 0.40%, Mn: 1.0 to 2.0%, S: more than 0.010% and at most 0.05%, Cr: 0.01 to 0.5%, Al: 0.001 to 0.05%, N: Ti/3.4 to 0.02%, and Ti: 0.005 to 0.05%, the balance being Fe and impurities, and satisfies the following formula (1): 2S-3Ti<0.040??(1) where, into each element symbol in formula (1), the content (mass %) of the corresponding element is substituted.Type: ApplicationFiled: July 4, 2012Publication date: July 3, 2014Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATIONInventors: Kisung Kim, Hiroaki Tahira, Kaori Kawano, Koji Watari