Patents by Inventor Kaori Mogi

Kaori Mogi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8653295
    Abstract: An ?-trifluoromethyl-?,?-unsaturated ester can be produced by reacting an ?-trifluoromethyl-?-hydroxy ester with sulfuryl fluoride (SO2F2) in the presence of an organic base. It is preferable that the raw substrate has a hydrogen atom as one ?-position substituent group and either an alkyl group, a substituted alkyl group, an alkenyl group, a substituted alkenyl group, an aromatic ring group or a substituted aromatic ring group as the other ?-position substituent group. It is more preferable that an ester moiety of the raw substrate is an alkyl ester. This raw substrate is readily available. Further, the desired reaction can proceed favorably with the use of this raw substrate. It is also preferable to use either 1,5-diazabicyclo[4.3.0]non-5-ene (DBN) or 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as the organic base. The desired reaction can proceed more favorably with the use of this organic base.
    Type: Grant
    Filed: September 24, 2009
    Date of Patent: February 18, 2014
    Assignee: Central Glass Company, Limited
    Inventors: Akihiro Ishii, Manabu Yasumoto, Takako Yamazaki, Kaori Mogi, Kazunori Mori, Takashi Masuda
  • Patent number: 8524913
    Abstract: ?-Trifluoromethyl-?-substituted-?-amino acids can be produced by allowing ?-trifluoromethyl-?-substituted-?,?-unsaturated esters to react with hydroxylamine to convert ?-trifluoromethyl-?-substituted-?,?-unsaturated esters into dehydrogenated closed-ring body of ?-trifluoromethyl-?-substituted-?-amino acid, and by hydrogenolyzing the dehydrogenated closed-ring body. According to this production process, novel ?-trifluoromethyl-?-substituted-?-amino acids which are free amino acids whose functional groups are not protected can be produced, in which ?-position substituent is not limited to aromatic ring group or substituted aromatic ring group while the relative stereochemistry of ?-position and ?-position can be also controlled.
    Type: Grant
    Filed: August 27, 2009
    Date of Patent: September 3, 2013
    Assignee: Central Glass Company, Limited
    Inventors: Akihiro Ishii, Manabu Yasumoto, Takako Yamazaki, Kaori Mogi, Takashi Masuda
  • Patent number: 8278479
    Abstract: An optically active, fluorine-containing carbonyl-ene product is produced by reacting a fluorine-containing ?-ketoester with an alkene in the presence of a transition metal complex having an optically active ligand. There are Mode 1 of conducting this reaction in the absence of reaction solvent, Mode 2 of conducting this reaction in a solvent that is low in relative dielectric constant, and Mode 3 of conducting this reaction in a halogenated hydrocarbon-series solvent. In each of these three modes, it is possible to produce the optically active, fluorine-containing carbonyl-ene product with low cost.
    Type: Grant
    Filed: December 18, 2007
    Date of Patent: October 2, 2012
    Assignees: Central Glass Company, Limited, Tokyo Institute of Technology
    Inventors: Koichi Mikami, Kohsuke Aikawa, Akihiro Ishii, Kaori Mogi, Takashi Ootsuka
  • Patent number: 8058412
    Abstract: There is provided a novel, useful dehydroxyfluorination agent containing sulfuryl fluoride (SO2F2) and an organic base that is free from a free hydroxyl group in the molecule. According to the present dehydroxyfluorination agent, it is not necessary to use perfluoroalkanesulfonyl fluoride, which is not preferable in large-scale use, and it is possible to advantageously produce optically-active fluoro derivatives, which are important intermediates of medicines, agricultural chemicals and optical materials, for example, 4-fluoroproline derivatives, 2?-deoxy-2?-fluorouridine derivatives, optically-active ?-fluorocarboxylate derivatives, and monofluoromethyl derivatives, even in large scale.
    Type: Grant
    Filed: June 25, 2007
    Date of Patent: November 15, 2011
    Assignee: Central Glass Company, Limited
    Inventors: Akihiro Ishii, Takashi Ootsuka, Manabu Yasumoto, Hideyuki Tsuruta, Kenjin Inomiya, Koji Ueda, Kaori Mogi
  • Patent number: 7985880
    Abstract: There is provided a method for producing an optically active 1-(fluoro-, trifluoromethyl- or trifluoromethoxy-substituted phenyl)alkylamine N-monoalkyl derivative, which includes the steps of conducting reductive alkylation of an optically active secondary amine and a formaldehyde (including an equivalent thereof) or lower aldehyde in the presence of a transition metal catalyst under a hydrogen gas atmosphere, thereby converting the secondary amine to an optically active tertiary amine of the formula, and subjecting the tertiary amine to hydrogenolysis. The target optically active compound can be produced efficiently by this production method.
    Type: Grant
    Filed: June 25, 2007
    Date of Patent: July 26, 2011
    Assignee: Central Glass Company, Limited
    Inventors: Akihiro Ishii, Kaori Mogi, Hideyuki Tsuruta, Kenjin Inomiya
  • Publication number: 20110160477
    Abstract: An ?-trifluoromethyl-?,?-unsaturated ester can be produced by reacting an ?-trifluoromethyl-?-hydroxy ester with sulfuryl fluoride (SO2F2) in the presence of an organic base. It is preferable that the raw substrate has a hydrogen atom as one ?-position substituent group and either an alkyl group, a substituted alkyl group, an alkenyl group, a substituted alkenyl group, an aromatic ring group or a substituted aromatic ring group as the other ?-position substituent group. It is more preferable that an ester moiety of the raw substrate is an alkyl ester. This raw substrate is readily available. Further, the desired reaction can proceed favorably with the use of this raw substrate. It is also preferable to use either 1,5-diazabicyclo[4.3.0]non-5-ene (DBN) or 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as the organic base. The desired reaction can proceed more favorably with the use of this organic base.
    Type: Application
    Filed: September 24, 2009
    Publication date: June 30, 2011
    Applicant: Central Glass Company ,Limited
    Inventors: Akihiro Ishii, Manabu Yasumoto, Takako Yamazaki, Kaori Mogi, Kazunori Mori, Takashi Masuda
  • Publication number: 20110152536
    Abstract: ?-Trifluoromethyl-?-substituted-?-amino acids can be produced by allowing ?-trifluoromethyl-?-substituted-?,?-unsaturated esters to react with hydroxylamine to convert ?-trifluoromethyl-?-substituted-?,?-unsaturated esters into dehydrogenated closed-ring body of ?-trifluoromethyl-?-substituted-?-amino acid, and by hydrogenolyzing the dehydrogenated closed-ring body. According to this production process, novel ?-trifluoromethyl-?-substituted-?-amino acids which are free amino acids whose functional groups are not protected can be produced, in which ?-position substituent is not limited to aromatic ring group or substituted aromatic ring group while the relative stereochemistry of ?-position and ?-position can be also controlled.
    Type: Application
    Filed: August 27, 2009
    Publication date: June 23, 2011
    Applicant: Central Glass Company, Limited
    Inventors: Akihiro Ishii, Manabu Yasumoto, Takako Yamazaki, Kaori Mogi, Takashi Masuda
  • Patent number: 7807858
    Abstract: It was found that a fluoro derivative can be produced by reacting a hydroxy derivative with sulfuryl fluoride (SO2F2) in the presence of an organic base or in the presence of an organic base and “a salt or complex comprising an organic base and hydrogen fluoride”. According to the present production process, it is not necessary to use perfluoroalkanesulfonyl fluoride, which is not preferable in industrial use, and it is possible to advantageously produce optically-active fluoro derivatives, which are important intermediates of medicines, agricultural chemicals and optical materials, specifically 4-fluoroproline derivatives, 2?-deoxy-2?-fluorouridine derivatives, optically-active ?-fluorocarboxylate derivatives, and the like, even in a large scale.
    Type: Grant
    Filed: March 17, 2006
    Date of Patent: October 5, 2010
    Assignee: Central Glass Company, Limited
    Inventors: Akihiro Ishii, Takashi Ootsuka, Manabu Yasumoto, Hideyuki Tsuruta, Kenjin Inomiya, Koji Ueda, Kaori Mogi
  • Publication number: 20090326272
    Abstract: There is provided a method for producing an optically active 1-(fluoro-, trifluoromethyl- or trifluoromethoxy-substituted phenyl)alkylamine N-monoalkyl derivative, which includes the steps of conducting reductive alkylation of an optically active secondary amine and a formaldehyde (including an equivalent thereof) or lower aldehyde in the presence of a transition metal catalyst under a hydrogen gas atmosphere, thereby converting the secondary amine to an optically active tertiary amine of the formula, and subjecting the tertiary amine to hydrogenolysis. The target optically active compound can be produced efficiently by this production method.
    Type: Application
    Filed: June 25, 2007
    Publication date: December 31, 2009
    Applicant: Central Glass Company, Limited
    Inventors: Akihiro Ishii, Kaori Mogi, Hideyuki Tsuruta, Kenjin Inomiya
  • Publication number: 20090312574
    Abstract: An optically active, fluorine-containing carbonyl-ene product is produced by reacting a fluorine-containing ?-ketoester with an alkene in the presence of a transition metal complex having an optically active ligand. There are Mode 1 of conducting this reaction in the absence of reaction solvent, Mode 2 of conducting this reaction in a solvent that is low in relative dielectric constant, and Mode 3 of conducting this reaction in a halogenated hydrocarbon-series solvent. In each of these three modes, it is possible to produce the optically active, fluorine-containing carbonyl-ene product with low cost.
    Type: Application
    Filed: December 18, 2007
    Publication date: December 17, 2009
    Applicants: Central Glass Company, Limited, Tokyo Institute of Technology
    Inventors: Koichi Mikami, Kohsuke Aikawa, Akihiro Ishii, Kaori Mogi, Takashi Ootsuka
  • Publication number: 20090250658
    Abstract: There is provided a novel, useful dehydroxyfluorination agent containing sulfuryl fluoride (SO2F2) and an organic base that is free from a free hydroxyl group in the molecule. According to the present dehydroxyfluorination agent, it is not necessary to use perfluoroalkanesulfonyl fluoride, which is not preferable in large-scale use, and it is possible to advantageously produce optically-active fluoro derivatives, which are important intermediates of medicines, agricultural chemicals and optical materials, for example, 4-fluoroproline derivatives, 2?-deoxy-2?-fluorouridine derivatives, optically-active ?-fluorocarboxylate derivatives, and monofluoromethyl derivatives, even in large scale.
    Type: Application
    Filed: June 25, 2007
    Publication date: October 8, 2009
    Applicant: Central Glass Company, Limited
    Inventors: Akihiro Ishii, Takashi Ootsuka, Manabu Yasumoto, Hideyuki Tsuruta, Kenjin Inomiya, Koji Ueda, Kaori Mogi
  • Publication number: 20080125589
    Abstract: It was found that a fluoro derivative can be produced by reacting a hydroxy derivative with sulfuryl fluoride (SO2F2) in the presence of an organic base or in the presence of an organic base and “a salt or complex comprising an organic base and hydrogen fluoride”. According to the present production process, it is not necessary to use perfluoroalkanesulfonyl fluoride, which is not preferable in industrial use, and it is possible to advantageously produce optically-active fluoro derivatives, which are important intermediates of medicines, agricultural chemicals and optical materials, specifically 4-fluoroproline derivatives, 2?-deoxy-2?-fluorouridine derivatives, optically-active ?-fluorocarboxylate derivatives, and the like, even in a large scale.
    Type: Application
    Filed: March 17, 2006
    Publication date: May 29, 2008
    Applicant: CENTRAL GLASS COMPANY, LIMITED
    Inventors: Akihiro Ishii, Takashi Ootsuka, Manabu Yasumoto, Hideyuki Tsuruta, Kenjin Inomiya, Koji Ueda, Kaori Mogi