Patents by Inventor KAORI SUGIHARA

KAORI SUGIHARA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11400432
    Abstract: Provided are a silicotitanate molded body having high strength and reduced generation of fine powder, a production method thereof, an adsorbent comprising the silicotitanate molded body, and a decontamination method of radioactive cesium and/or radioactive strontium by using the adsorbent. The silicotitanate molded body comprises: crystalline silicotitanate particles that have a particle size distribution in which 90% or more, on volume basis, of the particles have a particle size within a range of 1 ?m or more and 10 ?m or less and that are represented by a general formula of A2Ti2O3(SiO4).nH2O wherein A represents one or two alkali metal elements selected from Na and K, and n represents a number of 0 to 2; and an oxide of one or more elements selected from the group consisting of aluminum, zirconium, iron, and cerium.
    Type: Grant
    Filed: July 3, 2018
    Date of Patent: August 2, 2022
    Assignee: NIPPON CHEMICAL INDUSTRIAL CO., LTD.
    Inventors: Takashi Sakuma, Makoto Komatsu, Takeshi Izumi, Shinsuke Miyabe, Takeshi Sakamoto, Eiji Noguchi, Kaori Sugihara
  • Publication number: 20220180385
    Abstract: An information processing system that accepts a subscription from a user who presented a regular service code issued from a store where a prescription order for a contact lens by a doctor is confirmed, and sells the contact lens by regular delivery, the information processing system including a storage in which user identification information identifying a user who made the subscription, a regular service code issued to the user, contact lens information of the prescribed contact lens, a regular delivery date of the contact lens, and a purchase history of the contact lens of the user are stored in association with each other; a cancellation processing unit that, in a case where a notification is acquired from the user to cancel the purchase of the contact lens for the regular delivery date, executes a process of canceling the delivery of the regular delivery date, a delivery instruction output unit that outputs a delivery instruction to deliver the contact lens when the notification to cancel is not received
    Type: Application
    Filed: March 3, 2020
    Publication date: June 9, 2022
    Inventors: Kenta YAMADA, Kaori SUGIHARA, Norio SASAKI
  • Patent number: 11213799
    Abstract: An adsorbent capable of adsorbing radioactive antimony, radioactive iodine and radioactive ruthenium, the adsorbent containing cerium(IV) hydroxide in a particle or granular form having a particle size of 250 ?m or more and 1200 ?m or less; and a treatment method of radioactive waste water containing radioactive antimony, radioactive iodine and radioactive ruthenium, the treatment method comprising passing the radioactive waste water containing radioactive antimony, radioactive iodine and radioactive ruthenium through an adsorption column packed with the adsorbent, to adsorb the radioactive antimony, radioactive iodine and radioactive ruthenium on the adsorbent, wherein the absorbent is packed to a height of 10 cm or more and 300 cm or less of the adsorption column, and wherein the radioactive waste water is passed through the adsorption column at a linear velocity (LV) of 1 m/h or more and 40 m/h or less and a space velocity (SV) of 200 h?1 or less.
    Type: Grant
    Filed: December 8, 2016
    Date of Patent: January 4, 2022
    Assignees: EBARA CORPORATION, NIPPON CHEMICAL INDUSTRIAL CO., LTD.
    Inventors: Takashi Sakuma, Makoto Komatsu, Takeshi Izumi, Shinsuke Miyabe, Yutaka Kinose, Kiyoshi Satou, Kenta Kozasu, Mari Tokutake, Takeshi Sakamoto, Kaori Sugihara
  • Publication number: 20200129956
    Abstract: Provided are a silicotitanate molded body having high strength and reduced generation of fine powder, a production method thereof, an adsorbent comprising the silicotitanate molded body, and a decontamination method of radioactive cesium and/or radioactive strontium by using the adsorbent. The silicotitanate molded body comprises: crystalline silicotitanate particles that have a particle size distribution in which 90% or more, on volume basis, of the particles have a particle size within a range of 1 ?m or more and 10 ?m or less and that are represented by a general formula of A2Ti2O3(SiO4).nH2O wherein A represents one or two alkali metal elements selected from Na and K, and n represents a number of 0 to 2; and an oxide of one or more elements selected from the group consisting of aluminum, zirconium, iron, and cerium.
    Type: Application
    Filed: July 3, 2018
    Publication date: April 30, 2020
    Inventors: Takashi SAKUMA, Makoto KOMATSU, Takeshi IZUMI, Shinsuke MIYABE, Takeshi SAKAMOTO, Eiji NOGUCHI, Kaori SUGIHARA
  • Publication number: 20190009245
    Abstract: An adsorbent capable of adsorbing radioactive antimony, radioactive iodine and radioactive ruthenium, the adsorbent containing cerium(IV) hydroxide in a particle or granular form having a particle size of 250 ?m or more and 1200 ?m or less; and a treatment method of radioactive waste water containing radioactive antimony, radioactive iodine and radioactive ruthenium, the treatment method comprising passing the radioactive waste water containing radioactive antimony, radioactive iodine and radioactive ruthenium through an adsorption column packed with the adsorbent, to adsorb the radioactive antimony, radioactive iodine and radioactive ruthenium on the adsorbent, wherein the absorbent is packed to a height of 10 cm or more and 300 cm or less of the adsorption column, and wherein the radioactive waste water is passed through the adsorption column at a linear velocity (LV) of 1 m/h or more and 40 m/h or less and a space velocity (SV) of 200 h?1 or less.
    Type: Application
    Filed: December 8, 2016
    Publication date: January 10, 2019
    Inventors: Takashi SAKUMA, Makoto KOMATSU, Takeshi IZUMI, Shinsuke MIYABE, Yutaka KINOSE, Kiyoshi SATOU, Kenta KOZASU, Mari TOKUTAKE, Takeshi SAKAMOTO, Kaori SUGIHARA
  • Patent number: 9910030
    Abstract: Small and extremely small molecules and ions or atoms may be detected with the novel device with exceptional sensitivity. The detection is implemented in a simple manner by the known acoustic resonator FBAR or by means of other technologies that measure the physical properties of the filled layer. The permeability of substances (e.g. active ingredients) through membranes such as cell membranes, lipid bilayers, and cell walls can be examined by combining a sensor with the reservoir and the membrane.
    Type: Grant
    Filed: January 9, 2012
    Date of Patent: March 6, 2018
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Martin Nirschl, Kaori Sugihara, Janos Vörös, Tomaso Zambelli
  • Publication number: 20180008954
    Abstract: Provided is an adsorbent for removal of iodide ions and iodate ions, which exhibits excellent adsorption performance of iodide ions and iodate ions. An adsorbent according to the present invention comprises cerium(IV) hydroxide and a poorly soluble silver compound. It is preferable that the content of cerium(IV) hydroxide is 50% by mass or more and 99% by mass or less, and the content of the poorly soluble silver compound is 1% by mass or more and 50% by mass or less. It is also preferable that the poorly soluble silver compound is at least one selected from silver zeolite, silver phosphate, silver chloride, and silver carbonate.
    Type: Application
    Filed: January 13, 2016
    Publication date: January 11, 2018
    Applicant: Nippon Chemical Industrial Co., Ltd.
    Inventors: Shinsuke Miyabe, Yutaka Kinose, Kenta Kozasu, Takeshi Sakamoto, Kiyoshi Satou, Kaori Sugihara
  • Publication number: 20120176601
    Abstract: A method for measuring transport properties of cell membranes or lipid bilayers by providing at least a substrate having a topside and a backside and plurality of nano- or micro-pores and a cell membrane covering the plurality of pores being accessible from both sides of the cell membrane for measurement, a material layer at least in the region of the pores to support the cell membrane at the pores but not hindering the transport through the cell membrane and the pores arranged on the substrate, either on the topside or on the backside, applying a fluid containing at least one molecule to the topside of the membrane in order to allow the molecule to move through the membrane, one of the pores and the material layer, and monitoring of the molecules having passed the material layer by using an optical detection method.
    Type: Application
    Filed: December 15, 2011
    Publication date: July 12, 2012
    Applicant: LEISTER PROCESS TECHNOLOGIES
    Inventors: Janos VOEROES, Marco DI BERARDINO, Kaori SUGIHARA, Tomaso ZAMBELLI
  • Publication number: 20120164716
    Abstract: Small and extremely small molecules and ions or atoms may be detected with the novel device with exceptional sensitivity. The detection is implemented in a simple manner by the known acoustic resonator FBAR or by means of other technologies that measure the physical properties of the filled layer. The permeability of substances (e.g. active ingredients) through membranes such as cell membranes, lipid bilayers, and cell walls can be examined by combining a sensor with the reservoir and the membrane.
    Type: Application
    Filed: January 9, 2012
    Publication date: June 28, 2012
    Applicants: SIEMENS AKTIENGESELLSCHAFT, ETH ZURICH
    Inventors: MARTIN NIRSCHL, KAORI SUGIHARA, JANOS VÖRÖS, TOMASO ZAMBELLI