Patents by Inventor Kaoru Aou

Kaoru Aou has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10752830
    Abstract: A coated proppant includes a solid core proppant particle and a heavy metal recovery coating, including heavy metal recovery crystals embedded within a polymer resin matrix. A process for the manufacture of a coated proppant includes providing a solid core proppant particle, and forming on the solid core proppant particle, a heavy metal recovery coating including heavy metal recovery crystals embedded within a polymer resin matrix.
    Type: Grant
    Filed: June 27, 2016
    Date of Patent: August 25, 2020
    Assignee: Dow Global Technologies LLC
    Inventors: Kaoru Aou, Juan Carlos Medina, H. Robert Goltz, Sachit Goyal, Arjun Raghuraman, Fabio Aguirre Vargas, Avery L. Watkins, David A. Reuschle, Ann F. Johnson, Yasmin N. Srivastava
  • Patent number: 10703964
    Abstract: A coated proppant includes a solid core proppant particle, a first resin coating, and a second coating on the first resin coating. The second coating includes the reaction product of one or more curatives and one or more preformed aliphatic or cycloaliphatic based isocyanurate tri-isocyanates, derived from aliphatic diisocyanates, cycloaliphatic diisocyanates, or a combination of aliphatic and cycloaliphatic diisocyanates.
    Type: Grant
    Filed: March 22, 2016
    Date of Patent: July 7, 2020
    Assignee: Dow Global Technologies LLC
    Inventors: Sachit Goyal, Kaoru Aou, Juan Carlos Medina, Arjun Raghuraman, Armin Hassanzadeh
  • Patent number: 10626214
    Abstract: A reaction system for forming a viscoelastic polyurethane foam includes an isocyanate component that has at least one isocyanate and an isocyanate-reactive component that is a mixture formed by adding at least a polyol component, an additive component, and a preformed aqueous polymer dispersion. The mixture includes, based on the total weight of the mixture, from 50.0 wt % to 99.8 wt % of a polyol component including at least one polyether polyol, from 0.1 wt % to 50.0 wt % of an additive component including at least one catalyst, and from 0.1 wt % to 6.0 wt % of a preformed aqueous polymer dispersion. The preformed aqueous polymer dispersion has a solids content from 10 wt % to 80 wt %, based on the total weight of the preformed aqueous polymer dispersion, and is one of an aqueous acid polymer dispersion or an aqueous acid modified polyolefin polymer dispersion in which the polyolefin is derived from at least one C2 to C20 alpha-olefin.
    Type: Grant
    Filed: December 15, 2015
    Date of Patent: April 21, 2020
    Assignees: Dow Global Technologies LLC, Rohm and Haas Company
    Inventors: Kaoru Aou, Joseph Jacobs, Qinghao Meng, Paul Cookson
  • Publication number: 20200017760
    Abstract: A coated article, such as a proppant, includes a base substrate and one or more polyurethane based coatings on an outer surface of the base substrate. The one or more polyurethane based coatings including the reaction product of an isocyanate component that has at least one isocyanate and an isocyanate-reactive component that has one or more simple polyols and one or more polyether monols at a ratio from 1:18 to 18:1. An isocyanate index is greater than 0.2 and less than 1.0.
    Type: Application
    Filed: March 21, 2018
    Publication date: January 16, 2020
    Inventors: Sachit Goyal, Arjun Raghuraman, Kaoru Aou, Juan Carlos Medina, Lenin Petroff, James Young, JR.
  • Patent number: 10450401
    Abstract: A reaction system for forming a polyurethane foam includes an isocyanate component that has at least one isocyanate and an isocyanate-reactive component that is a mixture formed by adding at least a polyol component, an additive component, and a preformed aqueous polymer dispersion. The mixture includes, based on the total weight of the mixture, from 50.0 wt % to 99.8 wt % of a polyol component including at least one polyether polyol, from 0.1 wt % to 50.0 wt % of an additive component including at least one catalyst, and from 0.1 wt % to 6.0 wt % of a preformed aqueous polymer dispersion. The preformed aqueous polymer dispersion has a solids content from 10 wt % to 80 wt %, based on the total weight of the preformed aqueous polymer dispersion, and is one of an aqueous acid polymer dispersion or an aqueous acid modified polyolefin polymer dispersion in which the polyolefin is derived from at least one C2 to C20 alpha-olefin.
    Type: Grant
    Filed: December 15, 2015
    Date of Patent: October 22, 2019
    Assignees: Dow Global Technologies LLC, Rohm and Haas Company
    Inventors: Kaoru Aou, Joseph Jacobs, Christopher Thiede
  • Publication number: 20190248951
    Abstract: A reaction system for forming a viscoelastic polyurethane foam includes an isocyanate component that has at least one isocyanate and an isocyanate-reactive component that is a mixture formed by adding at least a polyol component, an additive component, and a preformed aqueous polymer dispersion. The mixture includes, based on the total weight of the mixture, from 50.0 wt % to 99.8 wt % of a polyol component including at least one polyether polyol, from 0.1 wt % to 50.0 wt % of an additive component including at least one catalyst, and from 0.1 wt % to 6.0 wt % of a preformed aqueous polymer dispersion. The preformed aqueous polymer dispersion has a solids content from 10 wt % to 80 wt %, based on the total weight of the preformed aqueous polymer dispersion, and is one of an aqueous acid polymer dispersion or an aqueous acid modified polyolefin polymer dispersion in which the polyolefin is derived from at least one C2 to C20 alpha-olefin.
    Type: Application
    Filed: April 29, 2019
    Publication date: August 15, 2019
    Inventors: Kaoru Aou, Joseph Jacobs, Qinghao Meng, Paul Cookson
  • Publication number: 20190211171
    Abstract: A coated viscoelastic polyurethane foam includes a viscoelastic polyurethane foam having the coating thereon, the viscoelastic polyurethane foam having a resiliency of less than or equal to 20% as measured according to ASTM D3574, and a coating material on and embedded within the viscoelastic polyurethane foam, the coating material including an aqueous polymer emulsion and an encapsulated phase change material.
    Type: Application
    Filed: June 1, 2017
    Publication date: July 11, 2019
    Inventors: Kaoru Aou, Yibei Gu, Rajat Duggal, Yasmin N. Srivastava, Joseph Jacobs, Qinghao Meng, Gregoire Cardoen, Ralph C. Even, Morgan A. Springs
  • Patent number: 10294391
    Abstract: A method for exposing a substrate to water under superatmospheric pressure at a temperature of at least 70° C. includes (a) applying a reaction mixture to a substrate, which reaction mixture has an isocyanate index of at least 10 and includes an aromatic polyisocyanate component, a polyol component having a polyol with a hydroxyl equivalent weight of at least 500, and a catalyst component having an isocyanate trimerization catalyst, and at least partially curing the reaction mixture to form a polyisocyanurate or polyurethane-isocyanurate polymer having a glass transition temperature of at least 80° C., and (b) exposing the substrate and the polyisocyanurate or polyurethane-isocyanurate polymer to water under superatmospheric pressure at a temperature of at least 70° C.
    Type: Grant
    Filed: July 9, 2014
    Date of Patent: May 21, 2019
    Assignee: Dow Global Technologies LLC
    Inventors: Kaoru Aou, Juan Carlos Medina, Rajesh P. Paradkar, Dwight Latham, Michelle Tipps-Thomas
  • Publication number: 20190143635
    Abstract: A composite cushioning structure comprising: a three dimensional random loop layer comprising a plurality of random loops arranged in a three dimensional orientation formed from a polyolefin polymer; and a viscoelastic polyurethane foam layer having an air flow of at least 6.0 ft3/min as measured according to ASTM D3574, Test G and a resiliency of less than or equal to 20%, as measured according to ASTM D3574 Test H.
    Type: Application
    Filed: July 12, 2017
    Publication date: May 16, 2019
    Inventors: Kaoru Aou, Ronald Wevers, Viraj K. Shah
  • Publication number: 20190119431
    Abstract: A reaction system for forming a viscoelastic polyurethane foam includes an isocyanate component and an isocyanate-reactive component that includes at least a polyol component, an additive component, and a preformed aqueous polymer dispersant. The mixture includes 50.0 wt % to 99.8 wt % of the polyol component, 0.1 wt % to 49.9 wt % of the additive component, and 0.1 wt % to 6.0 wt % of the preformed aqueous polymer dispersant. The aqueous polymer dispersant has a pH from 6.0 to 12.0 and includes from 5 wt % to 60 wt % of a polymeric component and from 40 wt % to 95 wt % of a fluid medium. The polymeric component includes at least one base polymer derived from 20 wt % to 100 wt % of at least one hydrophilic acid monomer having at least one carbonyl group, phosphate group, phosphonate group, or sulfonyl group, and optionally derived from at least one hydrophobic terminally unsaturated hydrocarbon monomer.
    Type: Application
    Filed: June 9, 2016
    Publication date: April 25, 2019
    Inventors: Kaoru Aou, Thomas H. Kalantar, Qinghao Meng, John Klier, Antony K. Van Dyk, Gary W. Dombrowski, Joseph Jacobs
  • Patent number: 10160892
    Abstract: Solid compositions made from or coated with a non-melting organic polymer having a main glass transition temperature of at least 65° C., few if any isocyanate groups and a wet aged glass transition temperature of up to 60° C. are self-bonding materials that are useful in a variety of adhesive and molding operations. Under conditions of heat and moisture, these compositions will self-bond. The compositions can be used as adhesive coatings, which are solid and non-tacky and thus can be transported and stored easily under ambient conditions. These compositions are especially useful in applications in which, due to the location and/or orientation of the substrates, liquid or melting materials cannot be applied easily or will run off the substrates.
    Type: Grant
    Filed: November 23, 2013
    Date of Patent: December 25, 2018
    Assignee: Dow Global Technologies LLC
    Inventors: Kaoru Aou, Dwight D. Latham, Ragat Duggal
  • Patent number: 10138417
    Abstract: Embodiments relate to coated proppants, a method of making the coated proppants, and a method to use coated proppants in fracturing subterranean formations around oil and gas wells to improve oil recovery. The proppants are coated with an oil well treatment agent, specifically, a wax inhibitor and/or a pour point depressant composition.
    Type: Grant
    Filed: November 18, 2015
    Date of Patent: November 27, 2018
    Assignee: Dow Global Technologies LLC
    Inventors: Stephanie L. Potisek, Kaoru Aou, Juan Carlos Medina
  • Publication number: 20180201825
    Abstract: A coated proppant includes a solid core proppant particle, and a sulfide recovery coating that includes a sulfide capturing agent embedded within a polymer resin matrix. The sulfide capturing agent is a metal oxide.
    Type: Application
    Filed: June 23, 2016
    Publication date: July 19, 2018
    Inventors: Arjun Raghuraman, Alexander Williamson, Sachit Goyal, Runyu Tan, Juan Carlos Medina, Kaoru Aou
  • Publication number: 20180194992
    Abstract: A coated proppant includes a solid core proppant particle and a heavy metal recovery coating, including heavy metal recovery crystals embedded within a polymer resin matrix. A process for the manufacture of a coated proppant includes providing a solid core proppant particle, and forming on the solid core proppant particle, a heavy metal recovery coating including heavy metal recovery crystals embedded within a polymer resin matrix.
    Type: Application
    Filed: June 27, 2016
    Publication date: July 12, 2018
    Inventors: Kaoru Aou, Juan Carlos Medina, H. Robert Goltz, Sachit Goyal, Arjun Raghuraman, Fabio Aguirre Vargas, Avery L. Watkins, David A. Reuschle, Ann F. Johnson, Yasmin N. Srivastava
  • Publication number: 20180187820
    Abstract: A contaminant capturing liner includes a cured product of a composition including an epoxy resin component including at least one alkanolamine modified epoxy resin and at least one hardener. The contaminant capturing liner includes at least one contaminant capturing material embedded therewithin, and the contaminant capturing liner is a permeable layer having a difference between dry glass transition temperature and wet glass transition temperature of at least 14 C.
    Type: Application
    Filed: June 21, 2016
    Publication date: July 5, 2018
    Inventors: Fabio Aguirre Vargas, John Klier, William A. Koonce, Juan Carlos Medina, Nathan Wilmot, Kaoru Aou, Sachit Goyal
  • Publication number: 20180186098
    Abstract: A fiber-reinforced composite article useful for contaminant removal comprising at least one single layer of a fiber-reinforced composite having (a) at least one first polymer fiber-free region containing material adapted for removing contaminants, (b) at least one second polymer fiber-rich region containing fiber reinforcement material; and (c) at least one third polymer boundary region containing a portion of the first polymer fiber-free region and a portion of the second polymer fiber-rich region; a process for manufacturing the fiber-reinforced composite article; and a process for removing contaminants from a liquid fluid using the fiber-reinforced composite article.
    Type: Application
    Filed: June 21, 2016
    Publication date: July 5, 2018
    Inventors: Kevin J. Meyer, Kaoru Aou, Juan Carlos Medina, Douglas L. Potts
  • Publication number: 20180072941
    Abstract: A coated proppant includes a solid core proppant particle, a first resin coating, and a second coating on the first resin coating. The second coating includes the reaction product of one or more curatives and one or more preformed aliphatic or cycloaliphatic based isocyanurate tri-isocyanates, derived from aliphatic diisocyanates, cycloaliphatic diisocyanates, or a combination of aliphatic and cycloaliphatic diisocyanates.
    Type: Application
    Filed: March 22, 2016
    Publication date: March 15, 2018
    Inventors: Sachit Goyal, Kaoru Aou, Juan Carlos Medina, Arjun Raghuraman, Armin Hassanzadeh
  • Publication number: 20170362375
    Abstract: A reaction system for forming a viscoelastic polyurethane foam includes an isocyanate component that has at least one isocyanate and an isocyanate-reactive component that is a mixture formed by adding at least a polyol component, an additive component, and a preformed aqueous polymer dispersion. The mixture includes, based on the total weight of the mixture, from 50.0 wt % to 99.8 wt % of a polyol component including at least one polyether polyol, from 0.1 wt % to 50.0 wt % of an additive component including at least one catalyst, and from 0.1 wt % to 6.0 wt % of a preformed aqueous polymer dispersion. The preformed aqueous polymer dispersion has a solids content from 10 wt % to 80 wt %, based on the total weight of the preformed aqueous polymer dispersion, and is one of an aqueous acid polymer dispersion or an aqueous acid modified polyolefin polymer dispersion in which the polyolefin is derived from at least one C2 to C20 alpha-olefin.
    Type: Application
    Filed: December 15, 2015
    Publication date: December 21, 2017
    Applicants: Dow Global Technologies LLC, Rohm and Haas Company
    Inventors: Kaoru Aou, Joseph Jacobs, Qinghao Meng, Paul Cookson
  • Patent number: 9840576
    Abstract: Solid, non-melting polyurethanes having a glass transition temperature of at least 40° C. and free isocyanate groups are self-bonding materials that are useful in a variety of adhesive and molding operations. Under conditions of heat and moisture, these polyurethanes will self-bond. The polyurethanes can be used as adhesive coatings, which are solid and non-tacky and thus can be transported and stored easily under ambient conditions. These polyurethane adhesives are especially useful in applications in which, due to the location and/or orientation of the substrates, liquid or melting materials cannot be applied easily or will run off the substrates.
    Type: Grant
    Filed: November 23, 2013
    Date of Patent: December 12, 2017
    Assignee: Dow Global Technologies LLC
    Inventors: Kaoru Aou, Dwight D. Latham, Juan Carlos Medina
  • Patent number: 9840604
    Abstract: The present disclosure is directed to a composition and articles containing the composition. The composition comprises a foam and a plurality of gel particles dispersed in the foam. The gel particles comprise an olefin block copolymer and an oil.
    Type: Grant
    Filed: October 10, 2016
    Date of Patent: December 12, 2017
    Assignee: DOW GLOBAL TECHNOLOGIES LLC
    Inventors: Jeffrey C. Munro, Kaoru Aou, Raymond L. Laakso, Jr., Gary R. Marchand, Rogelio R. Gamboa