Patents by Inventor Kaoru Terada

Kaoru Terada has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160301071
    Abstract: A lithium transition metal based compound powder for a lithium secondary battery positive electrode material, characterized by including a lithium transition metal based compound, which has a function of enabling insertion and elimination of lithium ions, as a primary component and being produced by conducting firing after at least one type of compound (hereafter referred to as “Additive 1”) containing at least one type of element (hereafter referred to as “Additive element 1”) selected from B and Bi and at least one type of compound (hereafter referred to as “Additive 2”) containing at least one type of element (hereafter referred to as “Additive element 2”) selected from Mo and W are added in combination to a raw material of the primary component at a ratio of a total of Additive 1 and Additive 2 to a total amount of moles of transition metal elements in the raw material of the primary component of 0.01 percent by mole or more, and less than 2 percent by mole.
    Type: Application
    Filed: February 1, 2016
    Publication date: October 13, 2016
    Applicant: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Kenji SHIZUKA, Kenji OKAHARA, Kazuhiro KIKUCHI, Kaoru TERADA
  • Patent number: 8962195
    Abstract: A lithium transition metal-based compound powder for a lithium secondary battery positive electrode material that can achieve both improvements of load characteristics such as rate and output characteristics and a higher density is a lithium transition metal-based compound powder containing, as a main component, a lithium transition metal-based compound that has a function of allowing elimination and insertion of lithium ions, and including a crystal structure belonging to a layer structure, wherein primary particles are aggregated to form secondary particles, the ratio A/B of a median diameter A of the secondary particles to an average diameter (average primary particle diameter B) is in the range of 8 to 100, and 0.01?FWHM(110)?0.5 where FWHM(110) is the half width of a (110) diffraction peak present near a diffraction angle 2? of 64.5° in a powder X-ray diffraction analysis using a CuK? line.
    Type: Grant
    Filed: September 4, 2008
    Date of Patent: February 24, 2015
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Kenji Shizuka, Kaoru Terada, Kenji Okahara, Tomohiro Kusano
  • Patent number: 8801970
    Abstract: A nitride phosphor contains europium as an activating element and strontium, or strontium and calcium, as divalent metal elements. The phosphor further includes aluminum and silicon. Of the europium in the phosphor, at least 85% is in the form of Eu2+. The phosphor has a peak emission wavelength of from 590 nm to 650 nm. A phosphorescent body that includes the phosphor can be suitable for converting a wavelength of at least a portion of light emitted from an excitation light source in a light-emitting device.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: August 12, 2014
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Hiromu Watanabe, Masumi Itou, Keiichi Seki, Hiroshi Wada, Motoyuki Shigeiwa, Kaoru Terada, Naoto Kijima
  • Patent number: 8535829
    Abstract: There is provided a powder of a lithium transition-metal compound for a positive-electrode material in a lithium secondary battery, in which the use of the powder as that of a positive-electrode material in a lithium secondary battery achieves a good balance among improvement in battery performance, cost reduction, resistance to a higher voltage, and a higher level of safety. The powder of the lithium transition-metal compound for a positive-electrode material in a lithium secondary battery is characterized in that in a mercury intrusion curve obtained by mercury intrusion porosimetry, the amount of mercury intruded is in the range of 0.8 cm3/g to 3 cm3/g when the pressure is increased from 3.86 kPa to 413 MPa.
    Type: Grant
    Filed: April 6, 2007
    Date of Patent: September 17, 2013
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Kenji Shizuka, Kenji Okahara, Hiroyuki Imura, Kaoru Terada
  • Patent number: 8460580
    Abstract: The present invention relates to a phosphor comprising a nitride or an oxynitride, comprising an X-ray powder diffraction pattern comprising at least one Region having at least one peak with an intensity ratio I of 8% or less, the X-ray powder diffraction pattern measured in the 2? range from 10° to 60° using a CuK? line (1.54184 {acute over (?)}), wherein the Region is the 2? range from 41.5° to 47°, the intensity of each peak is a value obtained after background correction, and the intensity ratio I is defined by the formula (Ip×100)/Imax (%), where Imax represents the height of the most intense peak present in the 2? range from 34° to 37° and Ip represents the height of each peak.
    Type: Grant
    Filed: November 9, 2009
    Date of Patent: June 11, 2013
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Hiromu Watanabe, Masumi Itou, Keiichi Seki, Hiroshi Wada, Motoyuki Shigeiwa, Kaoru Terada, Naoto Kijima
  • Publication number: 20110003200
    Abstract: A lithium transition metal based compound powder for a lithium secondary battery positive electrode material, characterized by including a lithium transition metal based compound, which has a function of enabling insertion and elimination of lithium ions, as a primary component and being produced by conducting firing after at least one type of compound (hereafter referred to as “Additive 1”) containing at least one type of element (hereafter referred to as “Additive element 1”) selected from B and Bi and at least one type of compound (hereafter referred to as “Additive 2”) containing at least one type of element (hereafter referred to as “Additive element 2”) selected from Mo and W are added in combination to a raw material of the primary component at a ratio of a total of Additive 1 and Additive 2 to a total amount of moles of transition metal elements in the raw material of the primary component of 0.01 percent by mole or more, and less than 2 percent by mole.
    Type: Application
    Filed: December 21, 2007
    Publication date: January 6, 2011
    Applicant: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Kenji Shizuka, Kenji Okahara, Kazuhiro Kikuchi, Kaoru Terada
  • Patent number: 7824573
    Abstract: The present invention provides an alloy powder that is a material for producing inorganic functional materials such as phosphors, a phosphor with high brightness, and a method for producing the phosphor. An alloy powder for an inorganic functional material precursor contains at least one metal element and at least one activating element M1 and has a weight-average median diameter D50 of 5 ?m to 40 ?m. A method for producing a phosphor includes a step of heating an alloy, containing two or more metal elements for forming the phosphor, in a nitrogen-containing atmosphere.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: November 2, 2010
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Hiromu Watanabe, Masumi Itou, Keiichi Seki, Hiroshi Wada, Motoyuki Shigeiwa, Kaoru Terada, Naoto Kijima
  • Publication number: 20100209771
    Abstract: A lithium transition metal-based compound powder for a lithium secondary battery positive electrode material that can achieve both improvements of load characteristics such as rate and output characteristics and a higher density is a lithium transition metal-based compound powder containing, as a main component, a lithium transition metal-based compound that has a function of allowing elimination and insertion of lithium ions, and including a crystal structure belonging to a layer structure, wherein primary particles are aggregated to form secondary particles, the ratio A/B of a median diameter A of the secondary particles to an average diameter (average primary particle diameter B) is in the range of 8 to 100, and 0.01?FWHM(110)?0.5 where FWHM(110) is the half width of a (110) diffraction peak present near a diffraction angle 2? of 64.5° in a powder X-ray diffraction analysis using a CuK? line.
    Type: Application
    Filed: September 4, 2008
    Publication date: August 19, 2010
    Applicant: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Kenji Shizuka, Kaoru Terada, Kenji Okahara, Tomohiro Kusano
  • Publication number: 20100052515
    Abstract: The present invention relates to a phosphor comprising a nitride or an oxynitride, comprising an X-ray powder diffraction pattern comprising at least one Region having at least one peak with an intensity ratio I of 8% or less, the X-ray powder diffraction pattern measured in the 2? range from 10° to 60° using a CuK? line (1.54184 {acute over (?)}), wherein the Region is the 2? range from 41.5° to 47°, the intensity of each peak is a value obtained after background correction, and the intensity ratio I is defined by the formula (Ip×100)/Imax (%), where Imax represents the height of the most intense peak present in the 2? range from 34° to 37° and Ip represents the height of each peak.
    Type: Application
    Filed: November 9, 2009
    Publication date: March 4, 2010
    Applicant: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Hiromu WATANABE, Masumi Itou, Keiichi Seki, Hiroshi Wada, Motoyuki Shigeiwa, Kaoru Terada, Naoto Kijima
  • Publication number: 20090134775
    Abstract: The present invention provides an alloy powder that is a material for producing inorganic functional materials such as phosphors, a phosphor with high brightness, and a method for producing the phosphor. An alloy powder for an inorganic functional material precursor contains at least one metal element and at least one activating element M1 and has a weight-average median diameter D50 of 5 ?m to 40 ?m. A method for producing a phosphor includes a step of heating an alloy, containing two or more metal elements for forming the phosphor, in a nitrogen-containing atmosphere.
    Type: Application
    Filed: March 31, 2006
    Publication date: May 28, 2009
    Applicant: Mitsubishi Chemical Corporation
    Inventors: Hiromu Watanabe, Masumi Itou, Keiichi Seki, Hiroshi Wada, Motoyuki Shigeiwa, Kaoru Terada, Naoto Kijima
  • Publication number: 20090104530
    Abstract: There is provided a powder of a lithium transition-metal compound for a positive-electrode material in a lithium secondary battery, in which the use of the powder as that of a positive-electrode material in a lithium secondary battery achieves a good balance among improvement in battery performance, cost reduction, resistance to a higher voltage, and a higher level of safety. The powder of the lithium transition-metal compound for a positive-electrode material in a lithium secondary battery is characterized in that in a mercury intrusion curve obtained by mercury intrusion porosimetry, the amount of mercury intruded is in the range of 0.8 cm3/g to 3 cm3/g when the pressure is increased from 3.86 kPa to 413 MPa.
    Type: Application
    Filed: April 6, 2007
    Publication date: April 23, 2009
    Applicant: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Kenji Shizuka, Kenji Okahara, Hiroyuki Imura, Kaoru Terada