Patents by Inventor Kapil S. Sheth

Kapil S. Sheth has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220067863
    Abstract: Identifying geographical locations suitable for a vertiport. Suitability factors across a geographical area are identified for consideration including, without limitation, noise, zoning, transit stations, fire stations, and hospitals. The suitability factors have suitability values that are based on characteristics, including location-based suitability values (i.e., proximity to mass transit stations), level-based suitability values (i.e., noise levels), and characteristic-based suitability values (i.e., residential zoning). The vertiport assessment system divides the geographical area into subregions, identifies a set of candidate vertiport locations using suitability values, weights for scaling the impact of the suitability factor, and identifies a particular subregion as a candidate location if a composite value exceeds a threshold value. The candidate subregions are shown on a user interface map overlay in a color-coded gradient that reflects the composite values for a subregion.
    Type: Application
    Filed: December 23, 2020
    Publication date: March 3, 2022
    Inventors: Kapil S. Sheth, Parimal Hemchandra Kopardekar
  • Patent number: 10475346
    Abstract: Method of miles-in-trail passback restrictions for use in air traffic management. Miles-in-trail restrictions can be used as a traffic management initiative when downstream traffic congestion at airports or in sectors is anticipated. To successfully implement the miles-in-trail at airspace fixes or navigational aids, it is desired that restriction values be computed for passing back to upstream facilities at specific boundaries. This method incorporates traffic manager feedback, resulting in significant improvement in guidance. Additional operational considerations required by traffic managers to implement the passback restrictions, namely maximum ground delay and absorbable airborne delay, are used in this method. The method also includes the step of absorbing a small amount of ground and airborne delays which are sufficient to handle the imposed constraint.
    Type: Grant
    Filed: October 8, 2015
    Date of Patent: November 12, 2019
    Assignee: United States of America as Represented by the Administrator of NASA
    Inventors: Kapil S. Sheth, Sebastian A. Gutierrez-Nolasco
  • Patent number: 9558670
    Abstract: A dynamic constraint avoidance route system automatically analyzes routes of aircraft flying, or to be flown, in or near constraint regions and attempts to find more time and fuel efficient reroutes around current and predicted constraints. The dynamic constraint avoidance route system continuously analyzes all flight routes and provides reroute advisories that are dynamically updated in real time. The dynamic constraint avoidance route system includes a graphical user interface that allows users to visualize, evaluate, modify if necessary, and implement proposed reroutes.
    Type: Grant
    Filed: June 15, 2015
    Date of Patent: January 31, 2017
    Assignee: The United States of America as Represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Kapil S. Sheth, B. David McNally, Heinz Erzberger, Alexander R. Morando, Alexis A. Clymer, Fu-tai Shih
  • Patent number: 8290696
    Abstract: Methods for evaluating and implementing air traffic management tools and approaches for managing and avoiding an air traffic incident before the incident occurs. A first system receives parameters for flight plan configurations (e.g., initial fuel carried, flight route, flight route segments followed, flight altitude for a given flight route segment, aircraft velocity for each flight route segment, flight route ascent rate, flight route descent route, flight departure site, flight departure time, flight arrival time, flight destination site and/or alternate flight destination site), flight plan schedule, expected weather along each flight route segment, aircraft specifics, airspace (altitude) bounds for each flight route segment, navigational aids available. The invention provides flight plan routing and direct routing or wind optimal routing, using great circle navigation and spherical Earth geometry.
    Type: Grant
    Filed: January 27, 2010
    Date of Patent: October 16, 2012
    Assignee: The United States of America as Represented by the Administrator of the National Aeronautics & Space Administration (NASA)
    Inventors: Banavar Sridhar, Kapil S. Sheth, Gano Broto Chatterji, Karl D. Bilimoria, Shon Grabbe, John F. Schipper
  • Patent number: 7702427
    Abstract: Method and system for evaluating and implementing air traffic management tools and approaches for managing and avoiding an air traffic incident before the incident occurs. The invention provides flight plan routing and direct routing or wind optimal routing, using great circle navigation and spherical Earth geometry. The invention provides for aircraft dynamics effects, such as wind effects at each altitude, altitude changes, airspeed changes and aircraft turns to provide predictions of aircraft trajectory (and, optionally, aircraft fuel use). A second system provides several aviation applications using the first system. These applications include conflict detection and resolution, miles-in trail or minutes-in-trail aircraft separation, flight arrival management, flight re-routing, weather prediction and analysis and interpolation of weather variables based upon sparse measurements.
    Type: Grant
    Filed: July 30, 2004
    Date of Patent: April 20, 2010
    Assignee: The United States of America as represented by the National Aeronautics and Space Administration (NASA)
    Inventors: Banavar Sridhar, Kapil S. Sheth, Gano Broto Chatterji, Karl D. Bilimoria, Shon Grabbe, John F. Schipper