Patents by Inventor Kapil V. Ramachandran

Kapil V. Ramachandran has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11977084
    Abstract: The inventors surprisingly found that neural stimulation caused the synthesis and degradation of proteins into peptides which were then secreted into the cell media within minutes of stimulation by a novel neural-specific and membrane bound proteasome (neuronal membrane proteasome or NMP) that is transmembrane in nature. These secreted, activity-induced, proteasomal peptides (SNAPPs) range in size from about 500 Daltons to about 3000 Daltons. Surprisingly none of the peptides appear to be those previously known to have any neuronal function. Moreover, these SNAPPs have stimulatory activity and are heretofore a new class of signaling molecules. Moreover, the NMP appears to play a highly significant role in aspects of neuronal signaling known to be critical for neuronal function.
    Type: Grant
    Filed: August 28, 2020
    Date of Patent: May 7, 2024
    Assignee: The Johns Hopkins University
    Inventors: Seth S. Margolis, Kapil V. Ramachandran
  • Publication number: 20200393471
    Abstract: The inventors surprisingly found that neural stimulation caused the synthesis and degradation of proteins into peptides which were then secreted into the cell media within minutes of stimulation by a novel neural-specific and membrane bound proteasome (neuronal membrane proteasome or NMP) that is transmembrane in nature. These secreted, activity-induced, proteasomal peptides (SNAPPs) range in size from about 500 Daltons to about 3000 Daltons. Surprisingly none of the peptides appear to be those previously known to have any neuronal function. Moreover, these SNAPPs have stimulatory activity and are heretofore a new class of signaling molecules. Moreover, the NMP appears to play a highly significant role in aspects of neuronal signaling known to be critical for neuronal function.
    Type: Application
    Filed: August 28, 2020
    Publication date: December 17, 2020
    Inventors: Seth S. Margolis, Kapil V. Ramachandran
  • Patent number: 10775391
    Abstract: The inventors surprisingly found that neural stimulation caused the synthesis and degradation of proteins into peptides which were then secreted into the cell media within minutes of stimulation by a novel neural-specific and membrane bound proteasome (neuronal membrane proteasome or NMP) that is transmembrane in nature. These secreted, activity-induced, proteasomal peptides (SNAPPs) range in size from about 500 Daltons to about 3000 Daltons. Surprisingly none of the peptides appear to be those previously known to have any neuronal function. Moreover, these SNAPPs have stimulatory activity and are heretofore a new class of signaling molecules. Moreover, the NMP appears to play a highly significant role in aspects of neuronal signaling known to be critical for neuronal function.
    Type: Grant
    Filed: February 11, 2016
    Date of Patent: September 15, 2020
    Assignee: The Johns Hopkins University
    Inventors: Seth S. Margolis, Kapil V. Ramachandran
  • Publication number: 20200071367
    Abstract: The inventors surprisingly found that neural stimulation caused the synthesis and degradation of proteins into peptides which were then secreted into the cell media within minutes of stimulation by a novel neural membrane bound proteasome (NMP). These secreted, activity-induced, proteasomal peptides (SNAPPs) range in size from about 500 Daltons to about 3000 Daltons. Surprisingly none of the peptides appear to be those previously known to have any neuronal function. Moreover, these SNAPPs have stimulatory activity and are heretofore a new class of signaling molecules. The present invention provides methods of modulating NMP function, including in cases of NMP associated disease or disorder of neuronal cells, by stimulating or inhibiting NMP function. The present invention also provides methods for stimulation or enhancing cognitive function using SNAPPs, and methods for treating of NMP related diseases using SNAPPs.
    Type: Application
    Filed: February 28, 2018
    Publication date: March 5, 2020
    Inventors: Seth Margolis, Kapil V. Ramachandran
  • Publication number: 20180031576
    Abstract: The inventors surprisingly found that neural stimulation caused the synthesis and degradation of proteins into peptides which were then secreted into the cell media within minutes of stimulation by a novel neural-specific and membrane bound proteasome (neuronal membrane proteasome or NMP) that is transmembrane in nature. These secreted, activity-induced, proteasomal peptides (SNAPPs) range in size from about 500 Daltons to about 3000 Daltons. Surprisingly none of the peptides appear to be those previously known to have any neuronal function. Moreover, these SNAPPs have stimulatory activity and are heretofore a new class of signaling molecules. Moreover, the NMP appears to play a highly significant role in aspects of neuronal signaling known to be critical for neuronal function.
    Type: Application
    Filed: February 11, 2016
    Publication date: February 1, 2018
    Inventors: Seth S. Margolis, Kapil V. Ramachandran