Patents by Inventor Kara A. Meyers

Kara A. Meyers has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220209436
    Abstract: Flexible electrical connectors are provided to electrically connect electronic devices. The flexible electrical connector includes a removable adhesive tape strip having an adhesive surface thereof and an electrically conductive trace disposed on the adhesive tape strip. The flexible electrical connector engages an electronic device to form an electrical contact where the adhesive tape strip has an adhesive surface removably adhesively bonded to the substrate of the electronic device to at least partially cover the electrical contact.
    Type: Application
    Filed: May 1, 2020
    Publication date: June 30, 2022
    Inventors: Kayla C. Niccum, Ankit Mahajan, Mikhail L. Pekurovsky, Nicholas T. Gabriel, Roger W. Barton, Kara A. Meyers, Saagar A. Shah, Jonathan W. Kemling, Richard C. Webb
  • Publication number: 20220189790
    Abstract: A method includes placing an electronic device on a pliable mating surface on a major surface of a mold such that at least one contact pad on the electronic device presses against the pliable mating surface. The pliable mating surface is on a microstructure in an arrangement of microstructures on the major surface of the mold. A liquid encapsulant material is applied over the electronic device and the major surface of the mold, and then hardened to form a carrier for the electronic device. The mold and the carrier are separated such that the microstructures on the mold form a corresponding arrangement of microchannels in the carrier, and at least one contact pad on the electronic device is exposed in a microchannel in the arrangement of microchannels. A conductive particle-containing liquid is deposited in the microchannel, which directly contacts the contact pad exposed in the microchannel.
    Type: Application
    Filed: April 14, 2020
    Publication date: June 16, 2022
    Inventors: Ankit Mahajan, Saagar A. Shah, Mikhail L. Pekurovsky, Kayla C. Niccum, Kara A. Meyers, Matthew R.D. Smith, Gino L. Pitera, Graham M. Clarke, Jeremy K. Larsen, Teresa M. Goeddel
  • Publication number: 20220184262
    Abstract: Aspects of the present disclosure relate to a sensor device having an integrated circuit and a monitoring loop coupled to the integrated circuit. The monitoring loop includes a first conductive trace and a second conductive trace, each having a first end electrically coupled to the integrated circuit and a second end. The monitoring loop includes a sterilant-responsive switch electrically coupling the second ends of the first conductive trace and the second conductive trace. The sterilant-responsive switch has a first impedance state and a second impedance state. The sterilant-responsive switch modifies an electrical connection between the first conductive trace and the second conductive trace based on exposure to an adequate environmental condition in an adequate sterilization process. The sensor device also includes an antenna coupled to the integrated circuit forming an antenna loop that is distinct from the monitoring loop.
    Type: Application
    Filed: April 21, 2020
    Publication date: June 16, 2022
    Inventors: Wensheng XIA, Naiyong Jing, Kara A. Meyers, Ankit Mahajan, Benjamin J. M√ľnstermann, Nicholas T. Gabriel, G. Marco Bommarito, Daniel J. Theis, Roger W. Barton, Mikhail L. Pekurovsky
  • Publication number: 20220111490
    Abstract: A bonded abrasive wheel is disclosed comprising a plurality of abrasive particles disposed in a binder, a first grinding surface, a second surface opposing the first grinding surface, and an outer circumference. The wheel comprises a rotational axis extending through a central hub and a circuit configured as a Radio Frequency Identification (RFID) unit coupled to the abrasive wheel. The circuit comprises an antenna configured to communicate with one or more external devices and comprising a first end and a second end, wherein antenna has a radius of curvature about an axis along at least a portion thereof such that the first end is disposed adjacent to but is spaced from the second end, and an integrated circuit (IC) operably coupled to the antenna and configured to store at least a first data.
    Type: Application
    Filed: December 17, 2021
    Publication date: April 14, 2022
    Inventors: Joseph B. Eckel, Nicholas T. Gabriel, Ankit Mahajan, Mikhail L. Pekurovsky, Kara A. Meyers, Thomas J. Metzler, Saagar A. Shah
  • Publication number: 20220078918
    Abstract: A method for manufacturing an electronic device includes providing a substrate with a first major surface having a microchannel, wherein the microchannel has a first end and a second end; dispensing a conductive liquid in the microchannel to cause the conductive liquid to move, primarily by capillary pressure, in a first direction toward the first end of the microchannel and in a second direction toward the second end of the microchannel; and solidifying the conductive liquid to form an electrically conductive trace electrically connecting a first electronic device at the first end of the microchannel to a second electronic device at the second end of the microchannel.
    Type: Application
    Filed: December 30, 2019
    Publication date: March 10, 2022
    Inventors: Ankit Mahajan, Mikhail L. Pekurovsky, Saagar A. Shah, Kayla C. Niccum, Kara A. Meyers, Christopher G. Walker
  • Publication number: 20220048286
    Abstract: Methods, apparatuses and systems for printing an ink pattern on a moving web via die cutting are provided. A die roll including an inked pattern of die blades contacts a substrate to cut or cleave the substrate surface. While the die blades withdraw from the substrate, at least some of the ink transfers from the die blades to the cut substrate to form an ink pattern.
    Type: Application
    Filed: October 16, 2019
    Publication date: February 17, 2022
    Inventors: Thomas J. Metzler, Kara A. Meyers, Saagar A. Shah, Mikhail L. Pekurovsky, Matthew S. Stay, Shawn C. Dodds, Kevin T. Reddy, John T. Strand, Daniel J. Theis, Jeremy O. Swanson, Daniel M. Lentz
  • Publication number: 20220037278
    Abstract: An article includes a solid circuit die on a first major surface of a substrate, wherein the solid circuit die includes an arrangement of contact pads, and wherein at least a portion of the contact pads in the arrangement of contact pads are at least partially exposed on the first major surface of the substrate to provide an arrangement of exposed contact pads; a guide layer including an arrangement of microchannels, wherein the guide layer contacts the first major surface of the substrate such that at least some microchannels in the arrangement of microchannels overlie the at least some exposed contact pads in the arrangement of exposed contact pads; and a conductive particle-containing liquid in at least some of the microchannels. Other articles and methods of manufacturing the articles are described.
    Type: Application
    Filed: December 23, 2019
    Publication date: February 3, 2022
    Inventors: Ankit Mahajan, Saagar A. Shah, Daniel B. Taylor, Mikhail L. Pekurovsky, Kara A. Meyers, Kayla C. Niccum, David J. Rowe, Gino L. Pitera
  • Patent number: 11229987
    Abstract: A bonded abrasive wheel is disclosed comprising a plurality of abrasive particles disposed in a binder, a first grinding surface, a second surface opposing the first grinding surface, and an outer circumference. The wheel comprises a rotational axis extending through a central hub and a circuit configured as a Radio Frequency Identification (RFID) unit coupled to the abrasive wheel. The circuit comprises an antenna configured to communicate with one or more external devices and comprising a first end and a second end, wherein antenna has a radius of curvature about an axis along at least a portion thereof such that the first end is disposed adjacent to but is spaced from the second end, and an integrated circuit (IC) operably coupled to the antenna and configured to store at least a first data.
    Type: Grant
    Filed: August 15, 2019
    Date of Patent: January 25, 2022
    Assignee: 3M Innovative Properties Company
    Inventors: Joseph B. Eckel, Nicholas T. Gabriel, Ankit Mahajan, Mikhail L. Pekurovsky, Kara A. Meyers, Thomas J. Metzler, Saagar A. Shah
  • Publication number: 20220016670
    Abstract: Methods and apparatuses for applying coatings (9) on a moving web (3) are provided. A slot die (20) and a back-up roll (11) engage with each other. The back-up roll has a deformable inner layer (12) with a surface thereof covered by a deformable outer layer (14). The slot die and the flexible web at a contacting area are impressed into the back-up roll with an engagement depth D, which enables formation of a coating having a substantially uniform thickness.
    Type: Application
    Filed: December 3, 2019
    Publication date: January 20, 2022
    Inventors: Shawn C. Dodds, Tyler J. Rattray, Kara A. Meyers, Mikhail L. Pekurovsky, Scott L. Ciliske, James N. Dobbs, Samad Javid
  • Publication number: 20210379887
    Abstract: A printing system is provided. The printing system (300) includes a printing roll (310) having a rigid printing pattern (312) on a surface thereof configured to receive an ink material (330); and an inking roll (320) positioned adjacent to the printing roll. The inking roll includes an elastically deformable surface and a number of cells (324) disposed on the elastically deformable surface. A method of printing is also provided. The method includes (a) inking at least a portion of a rigid printing pattern (312) on a surface of a printing roll (310) by contacting the rigid printing pattern with an inking roll (320); and (b) contacting the rigid printing pattern with a substrate (350), transferring the ink material from the rigid printing pattern to a surface of the substrate. Printing systems and methods can achieve higher printing feature resolutions than typically achievable via flexographic printing.
    Type: Application
    Filed: October 14, 2019
    Publication date: December 9, 2021
    Inventors: Matthew R. D. Smith, Shawn C. Dodds, Mikhail L. Pekurovsky, Thomas J. Metzler, Matthew S. Stay, Kara A. Meyers, Samad Javid
  • Publication number: 20210280337
    Abstract: A stretchable conductor includes a substrate with a first major surface, wherein the substrate is an elastomeric material. An elongate wire is on the first major surface of the substrate; the wire includes a first end and a second end, and further includes at least one arcuate region between the first end and the second end. At least one portion of the arcuate region of the wire in the region has a first surface area portion embedded in the surface of the substrate and a second surface area portion unembedded on the substrate and exposed in an amount sufficient to render at least an area of the substrate in the region electrically conductive. The unembedded second surface portion of the arcuate region may lie above or below a plane of the substrate. Composite articles including a stretchable conductor in durable electrical contact with a conductive fabric are also disclosed.
    Type: Application
    Filed: September 23, 2020
    Publication date: September 9, 2021
    Inventors: Ankit Mahajan, James Zhu, Saagar A. Shah, Mikhail L. Pekurovsky, Vivek Krishnan, Kevin T. Reddy, Christopher B. Walker, JR., Michael A. Kropp, Kara A. Meyers, Teresa M. Goeddel, Thomas J. Metzler, Jonathan W. Kemling, Roger W. Barton
  • Publication number: 20210235586
    Abstract: Processes of making an electrical jumper (120) for electrical devices are provided. A micro-replication stamp (300) is used to press a layer of curable material (124) on a circuit substrate (102) to make patterned features. A conductive liquid (230) is disposed into the patterned features to make electrically conductive traces (126) that pass over a circuitry (110) and connect electrical contacts (122A, 122B). In some cases, the stamp (300) has a standoff (310).
    Type: Application
    Filed: March 27, 2019
    Publication date: July 29, 2021
    Inventors: Teresa M. Goeddel, Ankit Mahajan, Mikhail L. Pekurovsky, Thomas J. Metzler, Saagar A. Shah, Kara A. Meyers, Jonathan W. Kemling, Jeremy K. Larsen
  • Publication number: 20210212216
    Abstract: Flexible devices including conductive traces with enhanced stretchability, and methods of making and using the same are provided. The circuit die is disposed on a flexible substrate. Electrically conductive traces are formed in channels on the flexible substrate to electrically contact with contact pads of the circuit die. A first polymer liquid flows in the channels to cover a free surface of the traces. The circuit die can also be surrounded by a curing product of a second polymer liquid.
    Type: Application
    Filed: September 12, 2019
    Publication date: July 8, 2021
    Inventors: Saagar Shah, Mikhail L. Pekurovsky, Ankit Mahajan, Lyudmila A. Pekurovsky, Jessica Chiu, Jeremy K. Larsen, Kara A. Meyers, Teresa M. Goeddel, Thomas J. Metzler, Jonathan W. Kemling, Richard J. Pokorny, Benjamin R. Coonce, Chad M. Amb, Thomas P. Klun
  • Publication number: 20210178554
    Abstract: A bonded abrasive wheel is disclosed comprising a plurality of abrasive particles disposed in a binder, a first grinding surface, a second surface opposing the first grinding surface, and an outer circumference. The wheel comprises a rotational axis extending through a central hub and a circuit configured as a Radio Frequency Identification (RFID) unit coupled to the abrasive wheel. The circuit comprises an antenna configured to communicate with one or more external devices and comprising a first end and a second end, wherein antenna has a radius of curvature about an axis along at least a portion thereof such that the first end is disposed adjacent to but is spaced from the second end, and an integrated circuit (IC) operably coupled to the antenna and configured to store at least a first data.
    Type: Application
    Filed: August 15, 2019
    Publication date: June 17, 2021
    Inventors: Joseph B. Eckel, Nicholas T. Gabriel, Ankit Mahajan, Mikhail L. Pekurovsky, Kara A. Meyers, Thomas J. Metzler, Saagar A. Shah
  • Patent number: 10971468
    Abstract: Processes for automatic registration between a solid circuit die and electrically conductive interconnects, and articles or devices made by the same are provided. The solid circuit die is disposed on a substrate with contact pads aligned with channels on the substrate. Electrically conductive traces are formed by flowing a conductive liquid in the channels toward the contact pads to obtain the automatic registration.
    Type: Grant
    Filed: November 16, 2017
    Date of Patent: April 6, 2021
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Ankit Mahajan, Mikhail L. Pekurovsky, Matthew S. Stay, Daniel J. Theis, Ann M. Gilman, Shawn C. Dodds, Thomas J. Metzler, Matthew R. D. Smith, Roger W. Barton, Joseph E. Hernandez, Saagar A. Shah, Kara A. Meyers, James Zhu, Teresa M. Goeddel, Lyudmila A. Pekurovsky, Jonathan W. Kemling, Jeremy K. Larsen, Jessica Chiu, Kayla C. Niccum
  • Publication number: 20210035875
    Abstract: Processes for automatic registration between a solid circuit die and electrically conductive interconnects, and articles or devices made by the same are provided. The solid circuit die is disposed at a registration area of a substrate. Fluid channels extend into the registration area and have a portion underneath the bottom surface of the solid circuit die. Electrically conductive traces are formed by flowing a conductive liquid in the channels toward contact pads on the bottom surface of the circuit die to obtain the automatic registration.
    Type: Application
    Filed: February 27, 2019
    Publication date: February 4, 2021
    Inventors: Ankit Mahajan, Mikhail L. Pekurovsky, Saagar A. Shah, Thomas J. Metzler, Kara A. Meyers, James Zhu, Teresa M. Goeddel, Lyudmila A. Pekurovsky, Jonathan W. Kemling, Jeremy K. Larsen
  • Patent number: 10854355
    Abstract: A stretchable conductor includes a substrate with a first major surface and an elongate wire, wherein the substrate is an elastomeric material, the elongate wire is on the first major surface of the substrate, the wire includes a first end and a second end, and further includes at least one arcuate region between the first end and the second end. At least one portion of the arcuate region of the wire in the region has a first surface area portion embedded in the surface of the substrate and a second surface area portion unembedded on the substrate and exposed in an amount sufficient to render at least an area of the substrate in the region electrically conductive. The unembedded second surface portion of the arcuate region may lie above or below a plane of the substrate. Additionally, different methods of preparing said stretchable conductor are disclosed. Composite articles including said stretchable conductor in durable electrical contact with a conductive fabric are also disclosed.
    Type: Grant
    Filed: June 7, 2018
    Date of Patent: December 1, 2020
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Ankit Mahajan, Jr., James Zhu, Saagar A. Shah, Mikhail L. Pekurovsky, Vivek Krishnan, Kevin T. Reddy, Christopher B. Walker, Jr., Michael A. Kropp, Kara A. Meyers, Teresa M. Goeddel, Thomas J. Metzler, Jonathan W. Kemling, Roger W. Barton
  • Publication number: 20200306790
    Abstract: Methods and apparatuses for applying coatings on a baggy web are provided. A Mayer rod and a back-up roll engage with each other to form a nip. The back-up roll has a deformable inner layer with a surface thereof covered by a deformable outer layer. The Mayer rod and the flexible web at a contacting area are impressed into the back-up roll with a machine-direction nip width W and a nip engagement depth D, which enables formation of a coating having a substantially uniform thickness.
    Type: Application
    Filed: November 12, 2018
    Publication date: October 1, 2020
    Inventors: Kara A. Meyers, Shawn C. Dodds, Eric A. Vandre, Tyler J. Rattray, Kevin T. Grove, Brittni M. Schiewer, Mikhail L. Pekurovsky, Samad Javid, James N. Dobbs, Wayne D. Meredyk
  • Publication number: 20200105440
    Abstract: A stretchable conductor includes a substrate with a first major surface and an elongate wire, wherein the substrate is an elastomeric material, the elongate wire is on the first major surface of the substrate, the wire includes a first end and a second end, and further includes at least one arcuate region between the first end and the second end. At least one portion of the arcuate region of the wire in the region has a first surface area portion embedded in the surface of the substrate and a second surface area portion unembedded on the substrate and exposed in an amount sufficient to render at least an area of the substrate in the region electrically conductive. The unembedded second surface portion of the arcuate region may lie above or below a plane of the substrate. Additionally, different methods of preparing said stretchable conductor are disclosed. Composite articles including said stretchable conductor in durable electrical contact with a conductive fabric are also disclosed.
    Type: Application
    Filed: June 7, 2018
    Publication date: April 2, 2020
    Inventors: Ankit Mahajan, Jr., James Zhu, Saagar A. Shah, Mikhail L. Pekurovsky, Vivek Krishnan, Kevin T. Reddy, Christopher B. Walker, Jr., Michael A. Kropp, Kara A. Meyers, Teresa M. Goeddel, Thomas J. Metzler, Jonathan W. Kemling, Roger W. Barton
  • Publication number: 20190273061
    Abstract: Processes for automatic registration between a solid circuit die and electrically conductive interconnects, and articles or devices made by the same are provided. The solid circuit die is disposed on a substrate with contact pads aligned with channels on the substrate. Electrically conductive traces are formed by flowing a conductive liquid in the channels toward the contact pads to obtain the automatic registration.
    Type: Application
    Filed: November 16, 2017
    Publication date: September 5, 2019
    Inventors: Ankit Mahajan, Mikhail L. Pekurovsky, Matthew S. Stay, Daniel J. Theis, Ann M. Gillman, Shawn C. Dodds, Thomas J. Metzler, Matthew R.D. Smith, Roger W. Barton, Joseph E. Hernandez, Saagar A. Shah, Kara A. Meyers, James Zhu, Teresa M. Goeddel, Lyudmila A. Pekurovsky, Jonathan W. Kemling, Jeremy K. Larsen, Jessica Chiu, Kayla C. Niccum