Patents by Inventor Kara Evanoff
Kara Evanoff has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240234671Abstract: A battery electrode composition is provided that comprises a composite material comprising one or more nanocomposites. The nanocomposites may each comprise a planar substrate backbone having a curved geometrical structure, and an active material forming a continuous or substantially continuous film at least partially encasing the substrate backbone. To form an electrode from the electrode composition, a plurality of electrically-interconnected nanocomposites of this type may be aggregated into one or more three-dimensional agglomerations, such as substantially spherical or ellipsoidal granules.Type: ApplicationFiled: February 5, 2024Publication date: July 11, 2024Inventors: Gleb YUSHIN, Kara EVANOFF, Oleksandr MAGAZYNSKYY
-
Patent number: 11894540Abstract: A battery electrode composition is provided that comprises a composite material comprising one or more nanocomposites. The nanocomposites may each comprise a planar substrate backbone having a curved geometrical structure, and an active material forming a continuous or substantially continuous film at least partially encasing the substrate backbone. To form an electrode from the electrode composition, a plurality of electrically-interconnected nanocomposites of this type may be aggregated into one or more three-dimensional agglomerations, such as substantially spherical or ellipsoidal granules.Type: GrantFiled: December 27, 2021Date of Patent: February 6, 2024Assignee: GEORGIA TECH RESEARCH CORPORATIONInventors: Gleb Yushin, Kara Evanoff, Oleksandr Magazynskyy
-
Publication number: 20230327181Abstract: Li-ion batteries are provided that include a cathode, an anode comprising active particles, an electrolyte ionically coupling the anode and the cathode, a separator electrically separating the anode and the cathode, and at least one hydrofluoric acid neutralizing agent incorporated into the anode or the separator. Li-ion batteries are also provided that include a cathode, an anode comprising active particles, an electrolyte ionically coupling the anode and the cathode, and a separator electrically separating the anode and the cathode, where the electrolyte may be formed from a mixture of an imide salt and at least one salt selected from the group consisting of LiPF6, LiBF4, and LiClO4. Li-ion battery anodes are also provided that include an active material core and a protective coating at least partially encasing the active material core, where the protective coating comprises a material that is resistant to hydrofluoric acid permeation.Type: ApplicationFiled: June 12, 2023Publication date: October 12, 2023Inventors: Gleb YUSHIN, Bogdan ZDYRKO, Kara EVANOFF
-
Patent number: 11670750Abstract: A battery electrode composition is provided that comprises a composite material comprising one or more nanocomposites. The nanocomposites may each comprise a planar substrate backbone having a curved geometrical structure, and an active material forming a continuous or substantially continuous film at least partially encasing the substrate backbone. To form an electrode from the electrode composition, a plurality of electrically-interconnected nanocomposites of this type may be aggregated into one or more three-dimensional agglomerations, such as substantially spherical or ellipsoidal granules.Type: GrantFiled: February 22, 2022Date of Patent: June 6, 2023Assignee: GEORGIA TECH RESEARCH CORPORATIONInventors: Gleb Yushin, Kara Evanoff, Oleksandr Magazynskyy
-
Patent number: 11621409Abstract: A battery electrode composition is provided that comprises a composite material comprising one or more nanocomposites. The nanocomposites may each comprise a planar substrate backbone having a curved geometrical structure, and an active material forming a continuous or substantially continuous film at least partially encasing the substrate backbone. To form an electrode from the electrode composition, a plurality of electrically-interconnected nanocomposites of this type may be aggregated into one or more three-dimensional agglomerations, such as substantially spherical or ellipsoidal granules.Type: GrantFiled: February 3, 2022Date of Patent: April 4, 2023Assignee: GEORGIA TECH RESEARCH CORPORATIONInventors: Gleb Yushin, Kara Evanoff, Oleksandr Magazynskyy
-
Publication number: 20220328798Abstract: A battery electrode composition is provided that comprises a composite material comprising one or more nanocomposites. The nanocomposites may each comprise a planar substrate backbone having a curved geometrical structure, and an active material forming a continuous or substantially continuous film at least partially encasing the substrate backbone. To form an electrode from the electrode composition, a plurality of electrically-interconnected nanocomposites of this type may be aggregated into one or more three-dimensional agglomerations, such as substantially spherical or ellipsoidal granules.Type: ApplicationFiled: February 3, 2022Publication date: October 13, 2022Inventors: Gleb YUSHIN, Kara EVANOFF, Oleksandr MAGAZYNSKYY
-
Publication number: 20220181597Abstract: A battery electrode composition is provided that comprises a composite material comprising one or more nanocomposites. The nanocomposites may each comprise a planar substrate backbone having a curved geometrical structure, and an active material forming a continuous or substantially continuous film at least partially encasing the substrate backbone. To form an electrode from the electrode composition, a plurality of electrically-interconnected nanocomposites of this type may be aggregated into one or more three-dimensional agglomerations, such as substantially spherical or ellipsoidal granules.Type: ApplicationFiled: February 22, 2022Publication date: June 9, 2022Inventors: Gleb YUSHIN, Kara EVANOFF, Oleksandr MAGAZYNSKYY
-
Publication number: 20220123273Abstract: A battery electrode composition is provided that comprises a composite material comprising one or more nanocomposites. The nanocomposites may each comprise a planar substrate backbone having a curved geometrical structure, and an active material forming a continuous or substantially continuous film at least partially encasing the substrate backbone. To form an electrode from the electrode composition, a plurality of electrically-interconnected nanocomposites of this type may be aggregated into one or more three-dimensional agglomerations, such as substantially spherical or ellipsoidal granules.Type: ApplicationFiled: December 27, 2021Publication date: April 21, 2022Inventors: Gleb YUSHIN, Kara EVANOFF, Oleksandr MAGAZYNSKYY
-
Patent number: 11217779Abstract: A battery electrode composition is provided that comprises a composite material comprising one or more nanocomposites. The nanocomposites may each comprise a planar substrate backbone having a curved geometrical structure, and an active material forming a continuous or substantially continuous film at least partially encasing the substrate backbone. To form an electrode from the electrode composition, a plurality of electrically-interconnected nanocomposites of this type may be aggregated into one or more three-dimensional agglomerations, such as substantially spherical or ellipsoidal granules.Type: GrantFiled: April 8, 2019Date of Patent: January 4, 2022Assignee: GEORGIA TECH RESEARCH CORPORATIONInventors: Gleb Yushin, Kara Evanoff, Oleksandr Magazynskyy
-
Publication number: 20210320320Abstract: Li-ion batteries are provided that include a cathode, an anode comprising active particles, an electrolyte ionically coupling the anode and the cathode, a separator electrically separating the anode and the cathode, and at least one hydrofluoric acid neutralizing agent incorporated into the anode or the separator. Li-ion batteries are also provided that include a cathode, an anode comprising active particles, an electrolyte ionically coupling the anode and the cathode, and a separator electrically separating the anode and the cathode, where the electrolyte may be formed from a mixture of an imide salt and at least one salt selected from the group consisting of LiPF6, LiBF4, and LiClO4. Li-ion battery anodes are also provided that include an active material core and a protective coating at least partially encasing the active material core, where the protective coating comprises a material that is resistant to hydrofluoric acid permeation.Type: ApplicationFiled: June 23, 2021Publication date: October 14, 2021Applicant: Georgia Tech Research CorporationInventors: Gleb YUSHIN, Bogdan ZDYRKO, Kara EVANOFF
-
Patent number: 11056715Abstract: Li-ion batteries are provided that include a cathode, an anode comprising active particles, an electrolyte ionically coupling the anode and the cathode, a separator electrically separating the anode and the cathode, and at least one hydrofluoric acid neutralizing agent incorporated into the anode or the separator. Li-ion batteries are also provided that include a cathode, an anode comprising active particles, an electrolyte ionically coupling the anode and the cathode, and a separator electrically separating the anode and the cathode, where the electrolyte may be formed from a mixture of an imide salt and at least one salt selected from the group consisting of LiPF6, LiBF4, and LiClO4. Li-ion battery anodes are also provided that include an active material core and a protective coating at least partially encasing the active material core, where the protective coating comprises a material that is resistant to hydrofluoric acid permeation.Type: GrantFiled: September 9, 2019Date of Patent: July 6, 2021Assignees: Sila Nanotechnologies, Inc., GEORGIA TECH RESEARCH CORPORATIONInventors: Gleb Yushin, Bogdan Zdyrko, Kara Evanoff
-
Publication number: 20200006805Abstract: Li-ion batteries are provided that include a cathode, an anode comprising active particles, an electrolyte ionically coupling the anode and the cathode, a separator electrically separating the anode and the cathode, and at least one hydrofluoric acid neutralizing agent incorporated into the anode or the separator. Li-ion batteries are also provided that include a cathode, an anode comprising active particles, an electrolyte ionically coupling the anode and the cathode, and a separator electrically separating the anode and the cathode, where the electrolyte may be formed from a mixture of an imide salt and at least one salt selected from the group consisting of LiPF6, LiBF4, and LiClO4. Li-ion battery anodes are also provided that include an active material core and a protective coating at least partially encasing the active material core, where the protective coating comprises a material that is resistant to hydrofluoric acid permeation.Type: ApplicationFiled: September 9, 2019Publication date: January 2, 2020Applicant: Georgia Tech Research CorporationInventors: Gleb YUSHIN, Bogdan ZDYRKO, Kara EVANOFF
-
Patent number: 10411290Abstract: Li-ion batteries are provided that include a cathode, an anode comprising active particles, an electrolyte ionically coupling the anode and the cathode, a separator electrically separating the anode and the cathode, and at least one hydrofluoric acid neutralizing agent incorporated into the anode or the separator. Li-ion batteries are also provided that include a cathode, an anode comprising active particles, an electrolyte ionically coupling the anode and the cathode, and a separator electrically separating the anode and the cathode, where the electrolyte may be formed from a mixture of an imide salt and at least one salt selected from the group consisting of LiPF6, LiBF4, and LiClO4. Li-ion battery anodes are also provided that include an active material core and a protective coating at least partially encasing the active material core, where the protective coating comprises a material that is resistant to hydrofluoric acid permeation.Type: GrantFiled: October 9, 2017Date of Patent: September 10, 2019Assignees: Sila Nanotechnologies, Inc., Georgia Tech Research CorporationInventors: Gleb Nikolayevich Yushin, Bogdan Zdyrko, Kara Evanoff
-
Publication number: 20190237744Abstract: A battery electrode composition is provided that comprises a composite material comprising one or more nanocomposites. The nanocomposites may each comprise a planar substrate backbone having a curved geometrical structure, and an active material forming a continuous or substantially continuous film at least partially encasing the substrate backbone. To form an electrode from the electrode composition, a plurality of electrically-interconnected nanocomposites of this type may be aggregated into one or more three-dimensional agglomerations, such as substantially spherical or ellipsoidal granules.Type: ApplicationFiled: April 8, 2019Publication date: August 1, 2019Inventors: Gleb YUSHIN, Kara EVANOFF, Oleksandr MAGAZYNSKYY
-
Publication number: 20180034099Abstract: Li-ion batteries are provided that include a cathode, an anode comprising active particles, an electrolyte ionically coupling the anode and the cathode, a separator electrically separating the anode and the cathode, and at least one hydrofluoric acid neutralizing agent incorporated into the anode or the separator. Li-ion batteries are also provided that include a cathode, an anode comprising active particles, an electrolyte ionically coupling the anode and the cathode, and a separator electrically separating the anode and the cathode, where the electrolyte may be formed from a mixture of an imide salt and at least one salt selected from the group consisting of LiPF6, LiBF4, and LiClO4. Li-ion battery anodes are also provided that include an active material core and a protective coating at least partially encasing the active material core, where the protective coating comprises a material that is resistant to hydrofluoric acid permeation.Type: ApplicationFiled: October 9, 2017Publication date: February 1, 2018Applicant: Georgia Tech Research CorporationInventors: Gleb Nikolayevich YUSHIN, Bogdan ZDYRKO, Kara EVANOFF
-
Patent number: 9786947Abstract: Li-ion batteries are provided that include a cathode, an anode comprising active particles, an electrolyte ionically coupling the anode and the cathode, a separator electrically separating the anode and the cathode, and at least one hydrofluoric acid neutralizing agent incorporated into the anode or the separator. Li-ion batteries are also provided that include a cathode, an anode comprising active particles, an electrolyte ionically coupling the anode and the cathode, and a separator electrically separating the anode and the cathode, where the electrolyte may be formed from a mixture of an imide salt and at least one salt selected from the group consisting of LiPF6, LiBF4, and LiClO4. Li-ion battery anodes are also provided that include an active material core and a protective coating at least partially encasing the active material core, where the protective coating comprises a material that is resistant to hydrofluoric acid permeation.Type: GrantFiled: February 6, 2012Date of Patent: October 10, 2017Assignees: Sila Nanotechnologies Inc., Georgia Tech Research CorporationInventors: Gleb Nikolayevich Yushin, Bogdan Zydrko, Kara Evanoff
-
Publication number: 20120202112Abstract: Li-ion batteries are provided that include a cathode, an anode comprising active particles, an electrolyte ionically coupling the anode and the cathode, a separator electrically separating the anode and the cathode, and at least one hydrofluoric acid neutralizing agent incorporated into the anode or the separator. Li-ion batteries are also provided that include a cathode, an anode comprising active particles, an electrolyte ionically coupling the anode and the cathode, and a separator electrically separating the anode and the cathode, where the electrolyte may be formed from a mixture of an imide salt and at least one salt selected from the group consisting of LiPF6, LiBF4, and LiClO4. Li-ion battery anodes are also provided that include an active material core and a protective coating at least partially encasing the active material core, where the protective coating comprises a material that is resistant to hydrofluoric acid permeation.Type: ApplicationFiled: February 6, 2012Publication date: August 9, 2012Inventors: Gleb Nikolayevich Yushin, Bogdan Zydrko, Kara Evanoff