Patents by Inventor Kareem Shehata

Kareem Shehata has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11906961
    Abstract: Systems and methods of unmanned vehicles having self-calibrating sensors and actuators are provided. The unmanned vehicle comprises a communication interface and a processor for controlling a propulsion system of the vehicle and receiving sensor data from one or more sensors of the vehicle. The processor is configured to operate in a guided calibration mode by controlling the propulsion system according to commands received from an external guided control system, while processing the sensor data to determine a degree of certainty on a calibration the sensor data and a position of the vehicle. The processor determines that the degree of certainty is above a threshold value associated with safe operation of the propulsion system in an autonomous calibration mode, and subsequently switch operation of the propulsion system to the autonomous calibration mode based on the determination that the degree of certainty is above the threshold value.
    Type: Grant
    Filed: April 1, 2021
    Date of Patent: February 20, 2024
    Assignee: CLEARPATH ROBOTICS INC.
    Inventors: Ryan Christopher Gariepy, Kareem Shehata, Prasenjit Mukherjee, Anthony Tod, Teyvonia Thomas, Yan Ma
  • Publication number: 20210286351
    Abstract: Systems and methods of unmanned vehicles having self-calibrating sensors and actuators are provided. The unmanned vehicle comprises a communication interface and a processor for controlling a propulsion system of the vehicle and receiving sensor data from one or more sensors of the vehicle. The processor is configured to operate in a guided calibration mode by controlling the propulsion system according to commands received from an external guided control system, while processing the sensor data to determine a degree of certainty on a calibration the sensor data and a position of the vehicle. The processor determines that the degree of certainty is above a threshold value associated with safe operation of the propulsion system in an autonomous calibration mode, and subsequently switch operation of the propulsion system to the autonomous calibration mode based on the determination that the degree of certainty is above the threshold value.
    Type: Application
    Filed: April 1, 2021
    Publication date: September 16, 2021
    Inventors: Ryan Christopher GARIEPY, Kareem SHEHATA, Prasenjit MUKHERJEE, Anthony TOD, Teyvonia THOMAS, Yan MA
  • Patent number: 10990093
    Abstract: Systems and methods of unmanned vehicles having self-calibrating sensors and actuators are provided. The unmanned vehicle comprises a communication interface and a processor for controlling a propulsion system of the vehicle and receiving sensor data from one or more sensors of the vehicle. The processor is configured to operate in a guided calibration mode by controlling the propulsion system according to commands received from an external guided control system, while processing the sensor data to determine a degree of certainty on a calibration the sensor data and a position of the vehicle. The processor determines that the degree of certainty is above a threshold value associated with safe operation of the propulsion system in an autonomous calibration mode, and subsequently switch operation of the propulsion system to the autonomous calibration mode based on the determination that the degree of certainty is above the threshold value.
    Type: Grant
    Filed: June 19, 2018
    Date of Patent: April 27, 2021
    Assignee: Clearpath Robotics Inc.
    Inventors: Ryan Christopher Gariepy, Kareem Shehata, Prasenjit Mukherjee, Anthony Tod, Teyvonia Thomas, Yan Ma
  • Publication number: 20180292818
    Abstract: Systems and methods of unmanned vehicles having self-calibrating sensors and actuators are provided. The unmanned vehicle comprises a communication interface and a processor for controlling a propulsion system of the vehicle and receiving sensor data from one or more sensors of the vehicle. The processor is configured to operate in a guided calibration mode by controlling the propulsion system according to commands received from an external guided control system, while processing the sensor data to determine a degree of certainty on a calibration the sensor data and a position of the vehicle. The processor determines that the degree of certainty is above a threshold value associated with safe operation of the propulsion system in an autonomous calibration mode, and subsequently switch operation of the propulsion system to the autonomous calibration mode based on the determination that the degree of certainty is above the threshold value.
    Type: Application
    Filed: June 19, 2018
    Publication date: October 11, 2018
    Inventors: Ryan Christopher GARIEPY, Kareem SHEHATA, Prasenjit MUKHERJEE, Anthony TOD, Teyvonia THOMAS, Yan MA
  • Patent number: 10012981
    Abstract: An apparatus, method, and system of self-calibrating sensors and actuators for unmanned vehicles is provided, which includes an unmanned vehicle comprising: a chassis; a propulsion system; one or more sensors configured to sense features around the chassis; a memory; a communication interface; and a processor configured to: operate the propulsion system in a guided calibration mode; automatically switch operation of the propulsion system to an autonomous calibration mode when a degree of certainty on a calibration of one or more of sensor data and a position of the chassis is above a first threshold value associated with safe operation of the propulsion system in the autonomous calibration mode; thereafter, operate the propulsion system in the autonomous calibration mode; and, automatically switch operation of the propulsion system to an operational mode when the degree of certainty is above a second threshold value greater than the first threshold value.
    Type: Grant
    Filed: August 30, 2017
    Date of Patent: July 3, 2018
    Inventors: Ryan Christopher Gariepy, Kareem Shehata, Prasenjit Mukherjee, Anthony Tod, Teyvonia Thomas, Yan Ma
  • Publication number: 20180004200
    Abstract: An apparatus, method, and system of self-calibrating sensors and actuators for unmanned vehicles is provided, which includes an unmanned vehicle comprising: a chassis; a propulsion system; one or more sensors configured to sense features around the chassis; a memory; a communication interface; and a processor configured to: operate the propulsion system in a guided calibration mode; automatically switch operation of the propulsion system to an autonomous calibration mode when a degree of certainty on a calibration of one or more of sensor data and a position of the chassis is above a first threshold value associated with safe operation of the propulsion system in the autonomous calibration mode; thereafter, operate the propulsion system in the autonomous calibration mode; and, automatically switch operation of the propulsion system to an operational mode when the degree of certainty is above a second threshold value greater than the first threshold value.
    Type: Application
    Filed: August 30, 2017
    Publication date: January 4, 2018
    Inventors: Ryan Christopher GARIEPY, Kareem SHEHATA, Prasenjit MUKHERJEE, Anthony TOD, Teyvonia THOMAS, Yan MA
  • Patent number: 9841761
    Abstract: A system is provided comprising a control station for remotely controlling unmanned aerial vehicles (“UAV”). The control station is configured to display vehicle status data received from each UAV, including displaying a location of each UAV in a single interface. Through the single interface, the control station may receive a control command input associated with one of the UAVs. The control station may transmit the received control command, or a command derived therefrom, to the respective UAV. The single interface may provide for a user to view and control flight operation of each of the UAVs independently through the single interface.
    Type: Grant
    Filed: May 6, 2013
    Date of Patent: December 12, 2017
    Assignee: AERYON LABS INC.
    Inventors: Kareem Shehata, Matthew Thiffault, James Thomas Pike, Michael Peasgood, Thomas Nagy
  • Patent number: 9804594
    Abstract: An apparatus, method, and system of self-calibrating sensors and actuators for unmanned vehicles is provided, which includes an unmanned vehicle comprising: a chassis; a propulsion system; one or more sensors configured to sense features around the chassis; a memory; a communication interface; and a processor configured to: operate the propulsion system in a guided calibration mode; automatically switch operation of the propulsion system to an autonomous calibration mode when a degree of certainty on a calibration of one or more of sensor data and a position of the chassis is above a first threshold value associated with safe operation of the propulsion system in the autonomous calibration mode; thereafter, operate the propulsion system in the autonomous calibration mode; and, automatically switch operation of the propulsion system to an operational mode when the degree of certainty is above a second threshold value greater than the first threshold value.
    Type: Grant
    Filed: October 9, 2015
    Date of Patent: October 31, 2017
    Inventors: Ryan Christopher Gariepy, Kareem Shehata, Prasenjit Mukherjee, Anthony Tod, Teyvonia Thomas, Yan Ma
  • Publication number: 20160129917
    Abstract: An apparatus, method, and system of self-calibrating sensors and actuators for unmanned vehicles is provided, which includes an unmanned vehicle comprising: a chassis; a propulsion system; one or more sensors configured to sense features around the chassis; a memory; a communication interface; and a processor configured to: operate the propulsion system in a guided calibration mode; automatically switch operation of the propulsion system to an autonomous calibration mode when a degree of certainty on a calibration of one or more of sensor data and a position of the chassis is above a first threshold value associated with safe operation of the propulsion system in the autonomous calibration mode; thereafter, operate the propulsion system in the autonomous calibration mode; and, automatically switch operation of the propulsion system to an operational mode when the degree of certainty is above a second threshold value greater than the first threshold value.
    Type: Application
    Filed: October 9, 2015
    Publication date: May 12, 2016
    Inventors: Ryan Christopher GARIEPY, Kareem SHEHATA, Prasenjit MUKHERJEE, Anthony TOD, Teyvonia THOMAS, Yan MA
  • Publication number: 20150142211
    Abstract: A system is provided comprising a control station for remotely controlling unmanned aerial vehicles (“UAV”). The control station is configured to display vehicle status data received from each UAV, including displaying a location of each UAV in a single interface. Through the single interface, the control station may receive a control command input associated with one of the UAVs. The control station may transmit the received control command, or a command derived therefrom, to the respective UAV. The single interface may provide for a user to view and control flight operation of each of the UAVs independently through the single interface.
    Type: Application
    Filed: May 6, 2013
    Publication date: May 21, 2015
    Inventors: Kareem Shehata, Matthew Thiffault, James Thomas Pike, Michael Peasgood, Thomas Nagy