Patents by Inventor Kareem Tawil

Kareem Tawil has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11565475
    Abstract: A method operates a three-dimensional (3D) metal object manufacturing system to compensate for errors that occur during object formation. In the method, thermal image data and dimensional image data of a metal object being formed by the 3D metal object manufacturing system is generated prior to completion of the metal object. Thermal conditions are identified from these data and compared to predetermined ranges corresponding to the identified thermal conditions to identify one or more errors. For identified errors outside a corresponding predetermined difference range, the method performs an error compensation technique. The error compensation includes modification of a surface data model, modification of machine-ready instructions, or operation of a subtractive device.
    Type: Grant
    Filed: April 10, 2020
    Date of Patent: January 31, 2023
    Assignee: Xerox Corporation
    Inventors: David A. Mantell, Christopher T. Chungbin, Chu-Heng Liu, Scott J. Vader, Zachary S. Vader, Viktor Sukhotskiy, Denis Cormier, Kareem Tawil
  • Patent number: 11483442
    Abstract: A method is disclosed. For example, the method executed by a processor of a multi-function device (MFD) includes monitoring operating parameters of a component in the MFD, calculating a life set point for the component based on the operating parameters, and changing a default life set point for the component stored in a memory of the MFD to the life set point that is calculated based on the operating parameters.
    Type: Grant
    Filed: December 22, 2020
    Date of Patent: October 25, 2022
    Assignee: Xerox Corporation
    Inventors: Rachel Lynn Tanchak, Erwin Ruiz, Carlos M. Terrero, Kareem Tawil, Linn C. Hoover
  • Publication number: 20220305818
    Abstract: A printing system comprises a print fluid deposition assembly, a media transport device, and an air flow control system. The print fluid deposition assembly comprises a printhead to eject a print fluid through an opening of a carrier plate to a deposition region. The media transport device holds a print medium against the movable support surface by vacuum suction and transports the print medium through the deposition region. The air flow control system is to flow air through the carrier plate to the movable support surface via a port through the carrier plate on an inboard side the carrier plate and to control a flow rate of the air flowed through the port based on a size of a print medium transported by the media transport device.
    Type: Application
    Filed: March 29, 2021
    Publication date: September 29, 2022
    Applicant: XEROX CORPORATION
    Inventors: Linn C. HOOVER, Erwin RUIZ, Rachel Lynn TANCHAK, Kareem TAWIL, Carlos M. TERRERO
  • Publication number: 20220305815
    Abstract: A printing system comprises a print fluid deposition assembly, a media transport device, and an air flow control system. The print fluid deposition assembly comprises a carrier plate and a printhead arranged to eject a print fluid through an opening of the carrier plate to a deposition region. The media transport device comprises a movable support surface to transport a print medium along a process direction through the deposition region, the media transport device holding the print medium against the movable support surface by vacuum suction. The air flow control system is arranged to selectively flow air through the opening of the carrier plate between the carrier plate and the printhead based on a location of a print medium transported by the media transport device relative to the printhead.
    Type: Application
    Filed: March 29, 2021
    Publication date: September 29, 2022
    Applicant: XEROX CORPORATION
    Inventors: Douglas K. HERRMANN, Linn C. HOOVER, Patrick Jun HOWE, Joseph C. SHEFLIN, Robert Jian ZHANG, John Patrick BAKER, Brian M. BALTHASAR, Glenn BATCHELOR, Anthony Salvatore CONDELLO, Ali R. DERGHAM, Timothy P. FOLEY, Richard A. KALB, Peter John KNAUSDORF, Jason M. LeFEVRE, Jack T. LESTRANGE, Chu-Heng LIU, Paul J. McCONVILLE, Seemit PRAHARAJ, Palghat S. RAMESH, Erwin RUIZ, Emmett James SPENCE, Rachel Lynn TANCHAK, Kareem TAWIL, Carlos M. TERRERO, Megan ZIELENSKI
  • Publication number: 20220201131
    Abstract: A method is disclosed. For example, the method executed by a processor of a multi-function device (MFD) includes monitoring operating parameters of a component in the MFD, calculating a life set point for the component based on the operating parameters, and changing a default life set point for the component stored in a memory of the MFD to the life set point that is calculated based on the operating parameters.
    Type: Application
    Filed: December 22, 2020
    Publication date: June 23, 2022
    Inventors: Rachel Lynn Tanchak, Erwin Ruiz, Carlos M. Terrero, Kareem Tawil, Linn C. Hoover
  • Publication number: 20210046541
    Abstract: A three-dimensional (3D) printer includes an ejector and a heating element configured to heat a solid printing material in the ejector, thereby causing the solid printing material to change to a liquid printing material within the ejector. The 3D printer also includes a coil wrapped at least partially around the ejector. The 3D printer also includes a power source configured to supply one or more pulses of power to the coil, which cause one or more drops of the liquid printing material to flow out of the ejector through a nozzle of the ejector. The 3D printer also includes a gas-controlling device configured to control a gas in the 3D printer.
    Type: Application
    Filed: August 12, 2020
    Publication date: February 18, 2021
    Applicant: XEROX CORPORATION
    Inventors: Viktor Sukhotskiy, David A. Mantell, Palghat S. Ramesh, Kareem Tawil, Alexander J. Fioravanti, Dinesh Krishna Kumar Jayabal
  • Publication number: 20200324486
    Abstract: A method operates a three-dimensional (3D) metal object manufacturing system to compensate for errors that occur during object formation. In the method, thermal image data and dimensional image data of a metal object being formed by the 3D metal object manufacturing system is generated prior to completion of the metal object. Thermal conditions are identified from these data and compared to predetermined ranges corresponding to the identified thermal conditions to identify one or more errors. For identified errors outside a corresponding predetermined difference range, the method performs an error compensation technique. The error compensation includes modification of a surface data model, modification of machine-ready instructions, or operation of a subtractive device.
    Type: Application
    Filed: April 10, 2020
    Publication date: October 15, 2020
    Inventors: David A. Mantell, Christopher T. Chungbin, Chu-Heng Liu, Scott J. Vader, Zachary S. Vader, Viktor Sukhotskiy, Denis Cormier, Kareem Tawil