Patents by Inventor Karel Vanheusden

Karel Vanheusden has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070104870
    Abstract: A precursor composition for the deposition and formation of an electrical feature such as a conductive feature. The precursor composition advantageously has a low viscosity enabling deposition using direct-write tools. The precursor composition also has a low conversion temperature, enabling the deposition and conversion to an electrical feature on low temperature substrates. A particularly preferred precursor composition includes silver metal for the formation of highly conductive silver features.
    Type: Application
    Filed: December 21, 2006
    Publication date: May 10, 2007
    Applicant: Cabot Corporation
    Inventors: Toivo Kodas, Mark Hampden-Smith, Karel Vanheusden, Hugh Denham, Aaron Stump, Allen Schult, Paolina Atanassova, Klaus Kunze
  • Publication number: 20070102679
    Abstract: A precursor composition for the deposition and formation of an electrical feature such as a conductive feature. The precursor composition advantageously has a low viscosity enabling deposition using direct-write tools. The precursor composition also has a low conversion temperature, enabling the deposition and conversion to an electrical feature on low temperature substrates. A particularly preferred precursor composition includes silver metal for the formation of highly conductive silver features.
    Type: Application
    Filed: December 21, 2006
    Publication date: May 10, 2007
    Applicant: Cabot Corporation
    Inventors: Toivo Kodas, Mark Hampden-Smith, Karel Vanheusden, Hugh Denham, Aaron Stump, Allen Schult, Paolina Atanassova, Klaus Kunze
  • Publication number: 20070104869
    Abstract: A precursor composition for the deposition and formation of an electrical feature such as a conductive feature. The precursor composition advantageously has a low viscosity enabling deposition using direct-write tools. The precursor composition also has a low conversion temperature, enabling the deposition and conversion to an electrical feature on low temperature substrates. A particularly preferred precursor composition includes silver metal for the formation of highly conductive silver features.
    Type: Application
    Filed: December 21, 2006
    Publication date: May 10, 2007
    Applicant: Cabot Corporation
    Inventors: Toivo Kodas, Mark Hampden-Smith, Karel Vanheusden, Hugh Denham, Aaron Stump, Allen Schult, Paolina Atanassova, Klaus Kunze
  • Publication number: 20070102681
    Abstract: A precursor composition for the deposition and formation of an electrical feature such as a conductive feature. The precursor composition advantageously has a low viscosity enabling deposition using direct-write tools. The precursor composition also has a low conversion temperature, enabling the deposition and conversion to an electrical feature on low temperature substrates. A particularly preferred precursor composition includes silver metal for the formation of highly conductive silver features.
    Type: Application
    Filed: December 21, 2006
    Publication date: May 10, 2007
    Applicant: Cabot Corporation
    Inventors: Toivo Kodas, Mark Hampden-Smith, Karel Vanheusden, Hugh Denham, Aaron Stump, Allen Schult, Paolina Atanassova, Klaus Kunze
  • Publication number: 20070102680
    Abstract: A precursor composition for the deposition and formation of an electrical feature such as a conductive feature. The precursor composition advantageously has a low viscosity enabling deposition using direct-write tools. The precursor composition also has a low conversion temperature, enabling the deposition and conversion to an electrical feature on low temperature substrates. A particularly preferred precursor composition includes silver metal for the formation of highly conductive silver features.
    Type: Application
    Filed: December 21, 2006
    Publication date: May 10, 2007
    Applicant: Cabot Corporation
    Inventors: Toivo Kodas, Mark Hampden-Smith, Karel Vanheusden, Hugh Denham, Aaron Stump, Allen Schult, Paolina Atanassova, Klaus Kunze
  • Publication number: 20070102677
    Abstract: A precursor composition for the deposition and formation of an electrical feature such as a conductive feature. The precursor composition advantageously has a low viscosity enabling deposition using direct-write tools. The precursor composition also has a low conversion temperature, enabling the deposition and conversion to an electrical feature on low temperature substrates. A particularly preferred precursor composition includes silver metal for the formation of highly conductive silver features.
    Type: Application
    Filed: December 21, 2006
    Publication date: May 10, 2007
    Applicant: Cabot Corporation
    Inventors: Toivo Kodas, Mark Hampden-Smith, Karel Vanheusden, Hugh Denham, Aaron Stump, Allen Schult, Paolina Atanassova, Klaus Kunze
  • Publication number: 20070102678
    Abstract: A precursor composition for the deposition and formation of an electrical feature such as a conductive feature. The precursor composition advantageously has a low viscosity enabling deposition using direct-write tools. The precursor composition also has a low conversion temperature, enabling the deposition and conversion to an electrical feature on low temperature substrates. A particularly preferred precursor composition includes silver metal for the formation of highly conductive silver features.
    Type: Application
    Filed: December 21, 2006
    Publication date: May 10, 2007
    Applicant: Cabot Corporation
    Inventors: Toivo Kodas, Mark Hampden-Smith, Karel Vanheusden, Hugh Denham, Aaron Stump, Allen Schult, Paolina Atanassova, Klaus Kunze
  • Publication number: 20070096063
    Abstract: A precursor composition for the deposition and formation of an electrical feature such as a conductive feature. The precursor composition advantageously has a low viscosity enabling deposition using direct-write tools. The precursor composition also has a low conversion temperature, enabling the deposition and conversion to an electrical feature on low temperature substrates. A particularly preferred precursor composition includes silver metal for the formation of highly conductive silver features.
    Type: Application
    Filed: December 21, 2006
    Publication date: May 3, 2007
    Applicant: Cabot Corporation
    Inventors: Toivo Kodas, Mark Hampden-Smith, Karel Vanheusden, Hugh Denham, Aaron Stump, Allen Schult, Paolina Atanassova, Klaus Kunze
  • Publication number: 20070096065
    Abstract: A precursor composition for the deposition and formation of an electrical feature such as a conductive feature. The precursor composition advantageously has a low viscosity enabling deposition using direct-write tools. The precursor composition also has a low conversion temperature, enabling the deposition and conversion to an electrical feature on low temperature substrates. A particularly preferred precursor composition includes silver metal for the formation of highly conductive silver features.
    Type: Application
    Filed: December 21, 2006
    Publication date: May 3, 2007
    Applicant: Cabot Corporation
    Inventors: Toivo Kodas, Mark Hampden-Smith, Karel Vanheusden, Hugh Denham, Aaron Stump, Allen Schult, Paolina Atanassova, Klaus Kunze
  • Publication number: 20070099330
    Abstract: A precursor composition for the deposition and formation of an electrical feature such as a conductive feature. The precursor composition advantageously has a low viscosity enabling deposition using direct-write tools. The precursor composition also has a low conversion temperature, enabling the deposition and conversion to an electrical feature on low temperature substrates. A particularly preferred precursor composition includes silver metal for the formation of highly conductive silver features.
    Type: Application
    Filed: December 21, 2006
    Publication date: May 3, 2007
    Applicant: Cabot Corporation
    Inventors: Toivo Kodas, Mark Hampden-Smith, Karel Vanheusden, Hugh Denham, Aaron Stump, Allen Schult, Paolina Atanassova, Klaus Kunze
  • Publication number: 20070096064
    Abstract: A precursor composition for the deposition and formation of an electrical feature such as a conductive feature. The precursor composition advantageously has a low viscosity enabling deposition using direct-write tools. The precursor composition also has a low conversion temperature, enabling the deposition and conversion to an electrical feature on low temperature substrates. A particularly preferred precursor composition includes silver metal for the formation of highly conductive silver features.
    Type: Application
    Filed: December 21, 2006
    Publication date: May 3, 2007
    Applicant: Cabot Corporation
    Inventors: Toivo Kodas, Mark Hampden-Smith, Karel Vanheusden, Hugh Denham, Aaron Stump, Allen Schult, Paolina Atanassova, Klaus Kunze
  • Publication number: 20070096062
    Abstract: A precursor composition for the deposition and formation of an electrical feature such as a conductive feature. The precursor composition advantageously has a low viscosity enabling deposition using direct-write tools. The precursor composition also has a low conversion temperature, enabling the deposition and conversion to an electrical feature on low temperature substrates. A particularly preferred precursor composition includes silver metal for the formation of highly conductive silver features.
    Type: Application
    Filed: December 21, 2006
    Publication date: May 3, 2007
    Applicant: Cabot Corporation
    Inventors: Toivo Kodas, Mark Hampden-Smith, Karel Vanheusden, Hugh Denham, Aaron Stump, Allen Schult, Paolina Atanassova, Klaus Kunze
  • Publication number: 20070034052
    Abstract: A process for the production of metal nanoparticles. The process comprises a rapid mixing of a solution of at least about 0.1 mole of a metal compound that is capable of being reduced to a metal by a polyol with a heated solution of a polyol and a substance that is capable of being adsorbed on the nanoparticles.
    Type: Application
    Filed: January 13, 2006
    Publication date: February 15, 2007
    Applicant: Cabot Corporation
    Inventors: Karel Vanheusden, Klaus Kunze, Hyungrak Kim, Aaron Stump, Allen Schult, Mark Hampden-Smith, Chuck Edwards, Anthony James, James Caruso, Toivo Kodas, Scott Haubrich, Mark Kowalski
  • Publication number: 20060189113
    Abstract: A metal nanoparticle composition for the fabrication of conductive features. The metal nanoparticle composition advantageously has a low viscosity permitting deposition of the composition by direct-write tools. The metal nanoparticle composition advantageously also has a low conversion temperature, permitting its deposition and conversion to an electrical feature on polymeric substrates.
    Type: Application
    Filed: January 13, 2006
    Publication date: August 24, 2006
    Applicant: Cabot Corporation
    Inventors: Karel Vanheusden, Klaus Kunze, Hyungrak Kim, Aaron Stump, Allen Schult, Mark Hampden-Smith, Chuck Edwards, Anthony James, James Caruso, Toivo Kodas, Scott Haubrich, Mark Kowalski
  • Publication number: 20060176350
    Abstract: A process of fabricating a passive electrical component, such as a resistor, a capacitor, or an inductor, is provided. The process includes the step of ink-jet printing at least one electronic ink onto a substrate in a predetermined pattern. The step of ink-jet printing may include the steps of: a) selecting at least one electronic ink having at least one electrical characteristic when cured; b) determining a positional layout for a plurality of droplets of the at least one electronic ink such that, when the at least one electronic ink has been cured, the positional layout provides a desired response for the electrical component; c) printing each of the plurality of droplets of the at least one electronic ink onto the substrate according to the positional layout using an ink-jet printing process; and d) curing the at least one electronic ink.
    Type: Application
    Filed: January 13, 2006
    Publication date: August 10, 2006
    Inventors: James Howarth, Chuck Edwards, Karel Vanheusden
  • Publication number: 20060163744
    Abstract: An electrical conductor formed from one or more metallic inks. The electrical conductor comprises a network of interconnected metallic nodes. Each node comprises a metallic composition, e.g., one or more metals or alloys. The network defines a plurality of pores having an average pore volume of less than about 10,000,000 nm3. The electrical conductors advantageously have a high degree of conductivity, e.g., a resistivity of not greater than about 10× the resistivity of the (bulk) metallic composition, which forms the individual nodes.
    Type: Application
    Filed: January 13, 2006
    Publication date: July 27, 2006
    Applicant: Cabot Corporation
    Inventors: Karel Vanheusden, Klaus Kunze, Hyungrak Kim, Aaron Stump, Allen Schult, Mark Hampden-Smith, Chuck Edwards, Anthony James, James Caruso, Toivo Kodas, Scott Haubrich, Mark Kowalski
  • Publication number: 20060158478
    Abstract: A process for fabricating an electrical component using an ink-jet printing process is provided. The process includes the steps of selecting at least one electronic ink having at least a first functionality when cured; determining a positional layout for a plurality of droplets of the electronic ink(s) such that, based at least on the first functionality, the positional layout provides a desired response for the electrical component; providing at least a first characteristic that relates to the electrical component; comparing the determined positional layout to at least one corresponding entry in a lookup table of empirical data relating to the first characteristic and to the determined positional layout; adjusting the determined positional layout accordingly; and printing each of the droplets of the electronic ink(s) onto a substrate according to the adjusted positional layout. The step of determining a positional layout may include determining a volume of ink to be deposited.
    Type: Application
    Filed: January 13, 2006
    Publication date: July 20, 2006
    Inventors: James Howarth, Chuck Edwards, Karel Vanheusden
  • Publication number: 20060159603
    Abstract: A process for the production of metal nanoparticles. Nanoparticles are formed by combining a metal compound with a solution that comprises a polyol and a substance that is capable of being adsorbed on the nanoparticles. The nanoparticles are precipitated by adding a nanoparticle-precipitating liquid in a sufficient amount to precipitate at least a substantial portion of the nanoparticles and of a protic solvent in a sufficient amount to improve the separation of the nanoparticles from the liquid phase.
    Type: Application
    Filed: January 13, 2006
    Publication date: July 20, 2006
    Applicant: Cabot Corporation
    Inventors: Karel Vanheusden, Hyungrak Kim, Aaron Stump, Allen Schult, Mark Hampden-Smith, Chuck Edwards, Anthony James, James Caruso, Toivo Kodas, Scott Haubrich, Mark Kowalski
  • Publication number: 20060159899
    Abstract: An apparatus and method for making a printed circuit board comprising a substrate and an electrical circuit is provided. The circuit is formed by deposition of a plurality of electronic inks onto the substrate and curing of each of the electronic inks. The deposition may be performed using an ink-jet printing process. The inkjet printing process may include the step of printing a plurality of layers, wherein a first layer includes at least one electronic ink deposited directly onto the substrate, and wherein each subsequent layer includes at least one electronic ink deposited on top of at least a portion of a previous layer when the previous layer has been cured. One or more of the layers may include at least two of the electronic inks.
    Type: Application
    Filed: January 13, 2006
    Publication date: July 20, 2006
    Inventors: Chuck Edwards, James Howarth, Karel Vanheusden
  • Publication number: 20060158470
    Abstract: A system and process for compensating for non-uniform surfaces of a substrate when direct printing traces is provided. The system and process provided herein measures the surface of a substrate and can determine whether the surface is substantially flat, rises or falls, or whether a mesa or valley is encountered. Depending on the surface feature (i.e., mesa, valley, falling or rising surface), the direct printing system can change the frequency of the printing timing signal, advance or retard the print timing signal, advance or retard the print data, or make repeated passes over certain areas. In addition, the process disclosed herein can determine whether two, three or all of the aforementioned steps for compensating for non-uniform substrates should be combined to most effectively and efficiently print on the non-uniform surface of the substrate as intended.
    Type: Application
    Filed: January 13, 2006
    Publication date: July 20, 2006
    Applicant: Cabot Corporation
    Inventors: Karel Vanheusden, Chuck Edwards