Patents by Inventor Karen E. Thomas-Alyea

Karen E. Thomas-Alyea has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11949065
    Abstract: A solid electrolyte including an inorganic lithium ion conductive film and a porous layer on a surface of the inorganic lithium ion conductive film, wherein the porous layer includes a first porous layer and a second porous layer, and the second porous layer is disposed between the inorganic lithium ion conductive film and the first porous layer, and wherein the first porous layer has a size greater which is than a pore size of the second porous layer.
    Type: Grant
    Filed: April 23, 2021
    Date of Patent: April 2, 2024
    Assignees: SAMSUNG ELECTRONICS CO., LTD., CORNING INCORPORATED
    Inventors: Jusik Kim, Sewon Kim, Hyunseok Kim, Michael Edward Badding, Zhen Song, Karen E. Thomas-Alyea, Lincoln James Miara, Dongmin Im
  • Publication number: 20210242495
    Abstract: A solid electrolyte including an inorganic lithium ion conductive film and a porous layer on a surface of the inorganic lithium ion conductive film, wherein the porous layer includes a first porous layer and a second porous layer, and the second porous layer is disposed between the inorganic lithium ion conductive film and the first porous layer, and wherein the first porous layer has a size greater which is than a pore size of the second porous layer.
    Type: Application
    Filed: April 23, 2021
    Publication date: August 5, 2021
    Inventors: Jusik KIM, Sewon KIM, Hyunseok KIM, Michael Edward BADDING, Zhen SONG, Karen E. THOMAS-ALYEA, Lincoln James MIARA, Dongmin IM
  • Patent number: 11038199
    Abstract: A solid electrolyte including an inorganic lithium ion conductive film and a porous layer on a surface of the inorganic lithium ion conductive film, wherein the porous layer includes a first porous layer and a second porous layer, and the second porous layer is disposed between the inorganic lithium ion conductive film and the first porous layer, and wherein the first porous layer has a size greater which is than a pore size of the second porous layer.
    Type: Grant
    Filed: March 11, 2019
    Date of Patent: June 15, 2021
    Assignees: SAMSUNG ELECTRONICS CO., LTD., CORNING INCORPORATED
    Inventors: Jusik Kim, Sewon Kim, Hyunseok Kim, Michael Edward Badding, Zhen Song, Karen E. Thomas-Alyea, Lincoln James Miara, Dongmin Im
  • Patent number: 10840513
    Abstract: A solid electrolyte for a negative electrode of a secondary battery includes a first porous solid electrolyte having a first surface; a first coating on the first surface of the first porous solid electrolyte; an adhesive electrolyte layer on the first porous solid electrolyte; and a second porous solid electrolyte on the adhesive electrolyte layer, the second porous solid electrolyte having a second surface; wherein the first porous solid electrolyte and the second porous solid electrolyte each have an ionic conductivity effective for a deposition metal; and wherein a surface of the first coating is less favorable for deposition of the deposition metal than the second surface of the second solid electrolyte. An electrode assembly and an electrochemical cell including the solid electrolyte and method for the manufacture thereof are also described.
    Type: Grant
    Filed: November 21, 2018
    Date of Patent: November 17, 2020
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Karen E. Thomas-Alyea, Robert Ashcraft, Lincoln Miara
  • Patent number: 10700377
    Abstract: A solid electrolyte for a negative electrode of a secondary battery includes a first solid electrolyte having a first surface and a second solid electrolyte on the first solid electrolyte and having a second surface. The first solid electrolyte and the second solid electrolyte each have an ionic conductivity effective for a deposition metal, and the first surface and the second surface are different in composition, structure, or both. An electrode assembly and an electrochemical cell including the solid electrolyte and method for the manufacture thereof are also described.
    Type: Grant
    Filed: January 12, 2018
    Date of Patent: June 30, 2020
    Assignees: SAMSUNG ELECTRONICS CO., LTD., CORNING INCORPORATED
    Inventors: Karen E. Thomas-Alyea, Yong-Gun Lee, Lincoln Miara, Hyunseok Kim, Jusik Kim, Michael E. Badding, Zhen Song
  • Publication number: 20200083562
    Abstract: A solid electrolyte including an inorganic lithium ion conductive film and a porous layer on a surface of the inorganic lithium ion conductive film, wherein the porous layer includes a first porous layer and a second porous layer, and the second porous layer is disposed between the inorganic lithium ion conductive film and the first porous layer, and wherein the first porous layer has a size greater which is than a pore size of the second porous layer.
    Type: Application
    Filed: March 11, 2019
    Publication date: March 12, 2020
    Inventors: Jusik KIM, Sewon KIM, Hyunseok KIM, Michael Edward BADDING, Zhen SONG, Karen E. THOMAS-ALYEA, Lincoln James MIARA, Dongmin IM
  • Patent number: 10476080
    Abstract: An electrode is provided having a front region adjacent to a separator and a back region adjacent to a current collector. The electrode includes an anion-absorbing material and a cation-absorbing material. The electrode exhibits a compositional profile such that the anion-absorbing material is present at a higher volume percent at the back region than at the front region. Also provided are electrochemical cells that employ such an electrode as a positive electrode. Optionally, the cells include an electrolyte comprised of a solution of a solvent and a salt dissolved therein at a concentration of at least about 2M when the cell is in a fully discharged state.
    Type: Grant
    Filed: October 27, 2016
    Date of Patent: November 12, 2019
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Karen E. Thomas-Alyea, Masoud Aryanpour, Jeong-Ju Cho
  • Publication number: 20190273258
    Abstract: A solid electrolyte for a negative electrode of a secondary battery includes a first porous solid electrolyte having a first surface; a first coating on the first surface of the first porous solid electrolyte; an adhesive electrolyte layer on the first porous solid electrolyte; and a second porous solid electrolyte on the adhesive electrolyte layer, the second porous solid electrolyte having a second surface; wherein the first porous solid electrolyte and the second porous solid electrolyte each have an ionic conductivity effective for a deposition metal; and wherein a surface of the first coating is less favorable for deposition of the deposition metal than the second surface of the second solid electrolyte. An electrode assembly and an electrochemical cell including the solid electrolyte and method for the manufacture thereof are also described.
    Type: Application
    Filed: November 21, 2018
    Publication date: September 5, 2019
    Inventors: Karen E. Thomas-Alyea, Robert Ashcraft, Lincoln Miara
  • Publication number: 20180205112
    Abstract: A solid electrolyte for a negative electrode of a secondary battery includes a first solid electrolyte having a first surface and a second solid electrolyte on the first solid electrolyte and having a second surface. The first solid electrolyte and the second solid electrolyte each have an ionic conductivity effective for a deposition metal, and the first surface and the second surface are different in composition, structure, or both. An electrode assembly and an electrochemical cell including the solid electrolyte and method for the manufacture thereof are also described.
    Type: Application
    Filed: January 12, 2018
    Publication date: July 19, 2018
    Inventors: Karen E. Thomas-Alyea, Yong-Gun Lee, Lincoln Miara, Hyunseok Kim, Jusik Kim, Michael E. Badding, Zhen Song
  • Patent number: 9923180
    Abstract: Porous separators for use in electrochemical cells and methods of their manufacture are provided. The separators are porous structures comprising an electroactive material and an electronically insulating structural material, wherein the electroactive material forms a percolating path in the separator.
    Type: Grant
    Filed: June 2, 2008
    Date of Patent: March 20, 2018
    Assignee: A123 Systems LLC
    Inventors: Karen E. Thomas-Alyea, Susan J. Babinec, Richard K. Holman
  • Publication number: 20170207458
    Abstract: An electrode is provided having a front region adjacent to a separator and a back region adjacent to a current collector. The electrode includes an anion-absorbing material and a cation-absorbing material. The electrode exhibits a compositional profile such that the anion-absorbing material is present at a higher volume percent at the back region than at the front region. Also provided are electrochemical cells that employ such an electrode as a positive electrode. Optionally, the cells include an electrolyte comprised of a solution of a solvent and a salt dissolved therein at a concentration of at least about 2M when the cell is in a fully discharged state.
    Type: Application
    Filed: October 27, 2016
    Publication date: July 20, 2017
    Inventors: Karen E. Thomas-Alyea, Masoud Aryanpour, Jeong-JU Cho
  • Patent number: 9509019
    Abstract: Electroactive compositions are disclosed for use in lithium ion battery electrodes. The compositions, such as multifunctional mixed metal olivines, provide an electrochemical cell having a plurality of open circuit voltages at different states of charge. The compositions afford improved state-of-charge monitoring, overcharge protection and/or overdischarge protection for lithium ion batteries.
    Type: Grant
    Filed: May 29, 2012
    Date of Patent: November 29, 2016
    Assignee: A123 Systems LLC
    Inventors: Yet-Ming Chiang, Andrew C. Chu, Young-Il Jang, Nonglak Meethong, Yu-Hua Kao, Gilbert N. Riley, Jr., Anthony E. Pullen, Karen E. Thomas-Alyea
  • Patent number: 8855956
    Abstract: A method of determining state of charge of an energy delivery device includes sampling voltage values of the energy delivery device during relaxation of the device. The method further includes regressing an open circuit voltage value and the total overpotential being relaxed. The regression includes a predetermined time constant of relaxation associated with the energy delivery device. One embodiment uses the equation V(t)=OCV?? exp(?t/tau), where V(t) represents the sampled voltage values, t represents times at which each of the voltage values are sampled, OCV represents the open circuit voltage value of the energy delivery device, ?represents the overpotential value, and tau represents the time constant of relaxation. The method uses a predetermined profile that relates open circuit voltage of the energy delivery device to state of charge of the device, to determine a particular state of charge corresponding to the regressed open circuit voltage value.
    Type: Grant
    Filed: June 3, 2009
    Date of Patent: October 7, 2014
    Assignee: A123 Systems LLC
    Inventor: Karen E. Thomas-Alyea
  • Publication number: 20140023888
    Abstract: A battery management system includes one or more lithium ion cells in electrical connection, each said cell comprising: first and second working electrodes and one or more reference electrodes, each reference electrode electronically isolated from the working electrodes and having a separate tab or current collector exiting the cell and providing an additional terminal for electrical measurement; and a battery management system comprising a battery state-of-charge monitor, said monitor being operable for receiving information relating to the potential difference of the working electrodes and the potential of one or more of the working electrodes versus the reference electrode.
    Type: Application
    Filed: September 23, 2013
    Publication date: January 23, 2014
    Applicant: A123 SYSTEMS, LLC
    Inventors: Ricardo FULOP, Yet-Ming CHIANG, Karen E. THOMAS-ALYEA, William H. GARDNER
  • Patent number: 8541122
    Abstract: A battery management system includes one or more lithium ion cells in electrical connection, each said cell comprising: first and second working electrodes and one or more reference electrodes, each reference electrode electronically isolated from the working electrodes and having a separate tab or current collector exiting the cell and providing an additional terminal for electrical measurement; and a battery management system comprising a battery state-of-charge monitor, said monitor being operable for receiving information relating to the potential difference of the working electrodes and the potential of one or more of the working electrodes versus the reference electrode.
    Type: Grant
    Filed: April 17, 2012
    Date of Patent: September 24, 2013
    Assignee: A123 Systems LLC
    Inventors: Ricardo Fulop, Yet-Ming Chiang, Karen E. Thomas-Alyea, William H. Gardner
  • Publication number: 20120328942
    Abstract: An electrode has a front face furthest from the current collector and a back face closest to the current collector and Is disposed on the current collector, and the electrode has a primary gradient of one of a chemical, physical and performance properties of the electroactive particle composition between the front and back faces, with the proviso that the primary gradient is not a bulk porosity gradient. In some embodiments, the electrode further comprises one or more secondary gradients Imposed over the primary gradient.
    Type: Application
    Filed: March 7, 2011
    Publication date: December 27, 2012
    Applicant: A123 Systems, Inc.
    Inventors: Karen E. Thomas-Alyea, Richard K. Holman, Gilbert N. Riley, JR., Susan J. Babinec
  • Publication number: 20120263986
    Abstract: A battery management system includes one or more lithium ion cells in electrical connection, each said cell comprising: first and second working electrodes and one or more reference electrodes, each reference electrode electronically isolated from the working electrodes and having a separate tab or current collector exiting the cell and providing an additional terminal for electrical measurement; and a battery management system comprising a battery state-of-charge monitor, said monitor being operable for receiving information relating to the potential difference of the working electrodes and the potential of one or more of the working electrodes versus the reference electrode.
    Type: Application
    Filed: April 17, 2012
    Publication date: October 18, 2012
    Applicant: A123 SYSTEMS, INC.
    Inventors: Ricardo FULOP, Yet-Ming CHIANG, Karen E. THOMAS-ALYEA, William H. GARDNER
  • Publication number: 20120231308
    Abstract: Electroactive compositions are disclosed for use in lithium ion battery electrodes. The compositions, such as multifunctional mixed metal olivines, provide an electrochemical cell having a plurality of open circuit voltages at different states of charge. The compositions afford improved state-of-charge monitoring, overcharge protection and/or overdischarge protection for lithium ion batteries.
    Type: Application
    Filed: May 29, 2012
    Publication date: September 13, 2012
    Inventors: Yet-Ming CHIANG, Andrew C. CHU, Young-II JANG, Nonglak MEETHONG, Yu-Hua KAO, Gilbert N. RILEY, JR., Anthony E. PULLEN, Karen E. THOMAS-ALYEA
  • Patent number: 8187735
    Abstract: Electroactive compositions are disclosed for use in lithium ion battery electrodes. The compositions, such as multifunctional mixed metal olivines, provide an electrochemical cell having a plurality of open circuit voltages at different states of charge. The compositions afford improved state-of-charge monitoring, overcharge protection and/or overdischarge protection for lithium ion batteries.
    Type: Grant
    Filed: July 11, 2008
    Date of Patent: May 29, 2012
    Assignee: A123 Systems, Inc.
    Inventors: Yet-Ming Chiang, Andrew C. Chu, Young-Il Jang, Nonglak Meethong, Yu-Hua Kao, Gilbert N. Riley, Jr., Anthony E. Pullen, Karen E. Thomas-Alyea
  • Patent number: 8163410
    Abstract: A battery management system includes one or more lithium ion cells in electrical connection, each said cell comprising: first and second working electrodes and one or more reference electrodes, each reference electrode electronically isolated from the working electrodes and having a separate tab or current collector exiting the cell and providing an additional terminal for electrical measurement; and a battery management system comprising a battery state-of-charge monitor, said monitor being operable for receiving information relating to the potential difference of the working electrodes and the potential of one or more of the working electrodes versus the reference electrode.
    Type: Grant
    Filed: September 15, 2008
    Date of Patent: April 24, 2012
    Assignee: A123 Systems, Inc.
    Inventors: Ricardo Fulop, Yet-Ming Chiang, Karen E. Thomas-Alyea, William H. Gardner