Patents by Inventor Karen Howarth

Karen Howarth has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220162707
    Abstract: The present disclosure relates to methods for detecting and targeting genomic rearrangements, in particular gene fusion events, by targeting a DNA molecule of interest with a set or pool of primers, wherein the forward primers and reverse primers produce a PCR amplification product when a genomic rearrangement is present. The present disclosure also relates to methods of bioinformatic analysis to determine whether or not the detection of an amplification product from the selective PCR is actually indicative of the presence of a gene fusion. The present disclosure also related to related methods of diagnosis and treatment of diseases and conditions associated with such genomic rearrangements, in particular cancers, such as lung cancer.
    Type: Application
    Filed: October 5, 2021
    Publication date: May 26, 2022
    Inventors: Samuel Woodhouse, Stefanie Lensing, Tim Forshew, Vincent Plagnol, Matthew Edward Smith, Karen Howarth, Michael Epstein
  • Publication number: 20220017970
    Abstract: The present disclosure provides, among other things, a way to quantify gene fusions in cell-free DNA. The method may be used to determine if the abundance of the fusion molecules has changed over time.
    Type: Application
    Filed: December 11, 2019
    Publication date: January 20, 2022
    Inventors: Karen Howarth, Samuel Woodhouse, Tim Forshew, Vincent Plagnol
  • Patent number: 11168371
    Abstract: The present disclosure relates to methods for detecting and targeting genomic rearrangements, in particular gene fusion events, by targeting a DNA molecule of interest with a set or pool of primers, wherein the forward primers and reverse primers produce a PCR amplification product when a genomic rearrangement is present. The present disclosure also relates to methods of bioinformatic analysis to determine whether or not the detection of an amplification product from the selective PCR is actually indicative of the presence of a gene fusion. The present disclosure also related to related methods of diagnosis and treatment of diseases and conditions associated with such genomic rearrangements, in particular cancers, such as lung cancer.
    Type: Grant
    Filed: April 19, 2019
    Date of Patent: November 9, 2021
    Assignee: INIVATA LTD.
    Inventors: Samuel Woodhouse, Stefanie Lensing, Tim Forshew, Vincent Plagnol, Matthew Edward Smith, Karen Howarth, Michael Epstein
  • Publication number: 20210139996
    Abstract: The present disclosure relates to methods for detecting and targeting genomic rearrangements, in particular gene fusion events, by targeting a DNA molecule of interest with a set or pool of primers, wherein the forward primers and reverse primers produce a PCR amplification product when a genomic rearrangement is present. The present disclosure also relates to methods of bioinformatic analysis to determine whether or not the detection of an amplification product from the selective PCR is actually indicative of the presence of a gene fusion. The present disclosure also related to related methods of diagnosis and treatment of diseases and conditions associated with such genomic rearrangements, in particular cancers, such as lung cancer.
    Type: Application
    Filed: November 20, 2020
    Publication date: May 13, 2021
    Inventors: Samuel Woodhouse, Stefanie Lensing, Tim Forshew, Vincent Plagnol, Matthew Edward Smith, Karen Howarth, Michael Epstein
  • Patent number: 10876170
    Abstract: The present disclosure relates to methods for detecting and targeting genomic rearrangements, in particular gene fusion events, by targeting a DNA molecule of interest with a set or pool of primers, wherein the forward primers and reverse primers produce a PCR amplification product when a genomic rearrangement is present. The present disclosure also relates to methods of bioinformatic analysis to determine whether or not the detection of an amplification product from the selective PCR is actually indicative of the presence of a gene fusion. The present disclosure also related to related methods of diagnosis and treatment of diseases and conditions associated with such genomic rearrangements, in particular cancers, such as lung cancer.
    Type: Grant
    Filed: June 18, 2018
    Date of Patent: December 29, 2020
    Assignee: INIVATA LTD.
    Inventors: Samuel Woodhouse, Stefanie Lensing, Tim Forshew, Vincent Plagnol, Matthew Edward Smith, Karen Howarth, Michael Epstein
  • Publication number: 20200010905
    Abstract: The present disclosure relates to methods for detecting and targeting genomic rearrangements, in particular gene fusion events, by targeting a DNA molecule of interest with a set or pool of primers, wherein the forward primers and reverse primers produce a PCR amplification product when a genomic rearrangement is present. The present disclosure also relates to methods of bioinformatic analysis to determine whether or not the detection of an amplification product from the selective PCR is actually indicative of the presence of a gene fusion. The present disclosure also related to related methods of diagnosis and treatment of diseases and conditions associated with such genomic rearrangements, in particular cancers, such as lung cancer.
    Type: Application
    Filed: June 18, 2018
    Publication date: January 9, 2020
    Inventors: Samuel Woodhouse, Stefanie Lensing, Tim Forshew, Vincent Plagnol, Matthew Edward Smith, Karen Howarth, Michael Epstein
  • Publication number: 20190241978
    Abstract: The present disclosure relates to methods for detecting and targeting genomic rearrangements, in particular gene fusion events, by targeting a DNA molecule of interest with a set or pool of primers, wherein the forward primers and reverse primers produce a PCR amplification product when a genomic rearrangement is present. The present disclosure also relates to methods of bioinformatic analysis to determine whether or not the detection of an amplification product from the selective PCR is actually indicative of the presence of a gene fusion. The present disclosure also related to related methods of diagnosis and treatment of diseases and conditions associated with such genomic rearrangements, in particular cancers, such as lung cancer.
    Type: Application
    Filed: April 19, 2019
    Publication date: August 8, 2019
    Inventors: Samuel Woodhouse, Stefanie Lensing, Tim Forshew, Vincent Plagnol, Matthew Edward Smith, Karen Howarth, Michael Epstein
  • Publication number: 20190241976
    Abstract: The present disclosure relates to methods for detecting and targeting genomic rearrangements, in particular gene fusion events, by targeting a DNA molecule of interest with a set or pool of primers, wherein the forward primers and reverse primers produce a PCR amplification product when a genomic rearrangement is present. The present disclosure also relates to methods of bioinformatic analysis to determine whether or not the detection of an amplification product from the selective PCR is actually indicative of the presence of a gene fusion. The present disclosure also related to related methods of diagnosis and treatment of diseases and conditions associated with such genomic rearrangements, in particular cancers, such as lung cancer.
    Type: Application
    Filed: April 19, 2019
    Publication date: August 8, 2019
    Inventors: Samuel Woodhouse, Stefanie Lensing, Tim Forshew, Vincent Plagnol, Matthew Edward Smith, Karen Howarth, Michael Epstein
  • Publication number: 20190241974
    Abstract: The present disclosure relates to methods for detecting and targeting genomic rearrangements, in particular gene fusion events, by targeting a DNA molecule of interest with a set or pool of primers, wherein the forward primers and reverse primers produce a PCR amplification product when a genomic rearrangement is present. The present disclosure also relates to methods of bioinformatic analysis to determine whether or not the detection of an amplification product from the selective PCR is actually indicative of the presence of a gene fusion. The present disclosure also related to related methods of diagnosis and treatment of diseases and conditions associated with such genomic rearrangements, in particular cancers, such as lung cancer.
    Type: Application
    Filed: April 19, 2019
    Publication date: August 8, 2019
    Inventors: Samuel Woodhouse, Stefanie Lensing, Tim Forshew, Vincent Plagnol, Matthew Edward Smith, Karen Howarth, Michael Epstein
  • Publication number: 20190241977
    Abstract: The present disclosure relates to methods for detecting and targeting genomic rearrangements, in particular gene fusion events, by targeting a DNA molecule of interest with a set or pool of primers, wherein the forward primers and reverse primers produce a PCR amplification product when a genomic rearrangement is present. The present disclosure also relates to methods of bioinformatic analysis to determine whether or not the detection of an amplification product from the selective PCR is actually indicative of the presence of a gene fusion. The present disclosure also related to related methods of diagnosis and treatment of diseases and conditions associated with such genomic rearrangements, in particular cancers, such as lung cancer.
    Type: Application
    Filed: April 19, 2019
    Publication date: August 8, 2019
    Inventors: Samuel Woodhouse, Stefanie Lensing, Tim Forshew, Vincent Plagnol, Matthew Edward Smith, Karen Howarth, Michael Epstein
  • Publication number: 20190241975
    Abstract: The present disclosure relates to methods for detecting and targeting genomic rearrangements, in particular gene fusion events, by targeting a DNA molecule of interest with a set or pool of primers, wherein the forward primers and reverse primers produce a PCR amplification product when a genomic rearrangement is present. The present disclosure also relates to methods of bioinformatic analysis to determine whether or not the detection of an amplification product from the selective PCR is actually indicative of the presence of a gene fusion. The present disclosure also related to related methods of diagnosis and treatment of diseases and conditions associated with such genomic rearrangements, in particular cancers, such as lung cancer.
    Type: Application
    Filed: April 19, 2019
    Publication date: August 8, 2019
    Inventors: Samuel Woodhouse, Stefanie Lensing, Tim Forshew, Vincent Plagnol, Matthew Edward Smith, Karen Howarth, Michael Epstein