Patents by Inventor Kari A. McGee

Kari A. McGee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230365767
    Abstract: Dry prepregs for ceramic matrix composites are described. The dry prepregs comprise a tow or fabric of ceramic fibers infiltrated with preceramic matrix comprising low levels of an aqueous solvent. The preceramic matrix contains an inorganic portion and a binder system. Binder systems comprising a binder and a plasticizer for the binder are described.
    Type: Application
    Filed: January 27, 2020
    Publication date: November 16, 2023
    Inventors: Daimon K Heller, Aaron R. Beaber, Amit J. Patel, Kari A. McGee, Henrik B. Van Lengerich
  • Patent number: 11639316
    Abstract: Fiber tows including a heat-activatable sizing are described. The sizing compositions have a first modulus at 25° C. of at least 150 megapascals (MPa) and no greater than 400 MPa; and a second modulus of 100,000 pascals (Pa) at a temperature of no greater than 160° C. Methods of preparing articles from such sized fiber tows and the articles comprising such sized fiber tows, including unidirectional and bidirectional constructions are also described.
    Type: Grant
    Filed: September 25, 2019
    Date of Patent: May 2, 2023
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Aaron R. Beaber, Kari A. McGee, Kimberly C. M. Schultz, Erica M. McCready, Aric W. Ross, Zachary A. Danielson
  • Publication number: 20220178061
    Abstract: A non woven web including a multiplicity of non-respirable, polycrystalline, aluminosilicate ceramic filaments entangled to form a cohesive mat, the polycrystalline, aluminosilicate ceramic filaments having an average mullite percent of at least 75 wt %. The cohesive mat preferably exhibits a compression resilience after 1,000 cycles at 900° C. when measured according to the Fatigue Test, of at least 30 kPa. Insulation articles including the cohesive mats or formed by chopping the ceramic mats into ceramic fibers, pollution control devices including the insulation articles, and methods of making the non-respirable, polycrystalline, aluminosilicate ceramic filaments and fibers, nonwoven webs, insulation articles, and pollution control devices, are also described.
    Type: Application
    Filed: February 22, 2022
    Publication date: June 9, 2022
    Inventors: Anne N. de Rovere, Kari A. McGee, Daimon K. Heller, William V. Chiu, Petrus J. Bekker, Michael R. Berrigan
  • Publication number: 20220033319
    Abstract: Fiber tows including a heat-activatable sizing are described. The sizing compositions have a first modulus at 25° C. of at least 150 megapascals (MPa) and no greater than 400 MPa; and a second modulus of 100,000 pascals (Pa) at a temperature of no greater than 160° C. Methods of preparing articles from such sized fiber tows and the articles comprising such sized fiber tows, including unidirectional and bidirectional constructions are also described.
    Type: Application
    Filed: September 25, 2019
    Publication date: February 3, 2022
    Inventors: Aaron R. Beaber, Kari A. McGee, Kimberly C.M. Schultz, Erica M. McCready, Aric W. Ross, Zachary A. Danielson
  • Publication number: 20210315664
    Abstract: The present disclosure provides a composite material. The composite material includes 20 to 40 weight percent (wt. %) of a polymerizable component; 6 to 40 wt. % of ceramic fibers; and 30 to 70 wt. % of nanoclusters. Each of the ceramic fibers has a diameter and a length, the ceramic fibers having an arithmetic mean diameter of 0.3 micrometers to 5 micrometers, and the length of fifty percent of the ceramic fibers (based on a total number of the ceramic fibers) is at least 10 micrometers and the length of ninety percent of the ceramic fibers is no greater than 500 micrometers. The present disclosure also provides a method of making the composite material. The method includes obtaining components and admixing the components to form a composite material. Further, the present disclosure provides a method of using a composite material including placing a composite material near or on a tooth surface, changing the shape of the composite material near or on a tooth surface, and hardening the composite material.
    Type: Application
    Filed: September 6, 2019
    Publication date: October 14, 2021
    Inventors: David M. Wilson, Bradley D. Craig, Mark B. Agre, Kari A. McGee, Daimon K Heller, William V. Chiu, Gareth A. Hughes
  • Publication number: 20210140080
    Abstract: A nonwoven article comprising a two-dimensional nonwoven structure having a longest major surface dimension and a shortest major surface dimension, said two-dimensional nonwoven structure comprising a plurality of discontinuous polycrystalline, aluminosilicate ceramic fibers having a length equal to the longest or shortest major surface dimension of the two-dimensional nonwoven structure or a length in between those dimensions.
    Type: Application
    Filed: May 9, 2019
    Publication date: May 13, 2021
    Inventors: Anne N. De Rovere, William V. Chiu, Daimon K Heller, Gerry A. Hoffdahl, Kari A. McGee, David M. Wilson
  • Publication number: 20210123173
    Abstract: A nonwoven article comprising a two-dimensional nonwoven structure or a three-dimensional nonwoven structure comprising a plurality of discontinuous polycrystalline, aluminosilicate ceramic fibers that are cohesively bonded together by a fired precursor inorganic binder, wherein each cohesively bonded discontinuous fiber is bonded to one or a plurality of other said discontinuous fibers at one or more locations along its length.
    Type: Application
    Filed: May 10, 2019
    Publication date: April 29, 2021
    Inventors: Anne N. De Rovere, Michael R. Berrigan, William V. Chiu, Daimon K Heller, Kari A. McGee, David M. Wilson
  • Publication number: 20200002861
    Abstract: A nonwoven web including a multiplicity of non-respirable, polycrystalline, aluminosilicate ceramic filaments entangled to form a cohesive mat, the polycrystalline, aluminosilicate ceramic filaments having an average mullite percent of at least 75 wt. %. The cohesive mat preferably exhibits a compression resilience after 1,000 cycles at 900° C. when measured according to the Fatigue Test, of at least 30 kPa. Insulation articles including the cohesive mats or formed by chopping the ceramic mats into ceramic fibers, pollution control devices including the insulation articles, and methods of making the non-respirable, polycrystalline, aluminosilicate ceramic filaments and fibers, nonwoven webs, insulation articles, and pollution control devices, are also described.
    Type: Application
    Filed: November 8, 2017
    Publication date: January 2, 2020
    Inventors: Anne N. de Rovere, Kari A. McGee, Daimon K Heller, William V. Chiu, Petrus J. Bekker, Michael R. Berrigan
  • Patent number: 10420207
    Abstract: The present disclosure provides an article having a substrate having a first nanostructured surface and an opposing second surface; and a conductor micropattern disposed on the first surface of the substrate, the conductor micropattern formed by a plurality of traces. The micropattern may have an open area fraction greater than 80%. The traces of the conductor micropattern may have a specular reflectance in a direction orthogonal to and toward the first surface of the substrate of less than 50%. The nanostructured surface may include nanofeatures having a height from 50 to 750 nanometers, a width from 15 to 200 nanometers, and a lateral spacing from 5 to 500 nanometers. The articles are useful in devices such as displays, in particular, touch screen displays useful for mobile hand held devices, tablets and computers. They also find use in antennas and for EMI shields.
    Type: Grant
    Filed: June 28, 2017
    Date of Patent: September 17, 2019
    Assignee: 3M Innovative Properties Company
    Inventors: Matthew H. Frey, Ta-Hua Yu, Kari A. McGee, Hui Luo, William B. Kolb, Brant U. Kolb, Moses M. David, Lijun Zu
  • Publication number: 20170303393
    Abstract: The present disclosure provides an article having a substrate having a first nanostructured surface and an opposing second surface; and a conductor micropattern disposed on the first surface of the substrate, the conductor micropattern formed by a plurality of traces. The micropattern may have an open area fraction greater than 80%. The traces of the conductor micropattern may have a specular reflectance in a direction orthogonal to and toward the first surface of the substrate of less than 50%. The nanostructured surface may include nanofeatures having a height from 50 to 750 nanometers, a width from 15 to 200 nanometers, and a lateral spacing from 5 to 500 nanometers. The articles are useful in devices such as displays, in particular, touch screen displays useful for mobile hand held devices, tablets and computers. They also find use in antennas and for EMI shields.
    Type: Application
    Filed: June 28, 2017
    Publication date: October 19, 2017
    Inventors: Matthew H. Frey, Ta-Hua Yu, Kari A. McGee, Hui Luo, William B. Kolb, Brant U. Kolb, Moses M. David, Lijun Zu
  • Patent number: 9736928
    Abstract: The present disclosure provides an article having (a) a substrate having a first nanostructured surface that is antireflective when exposed to air and an opposing second surface; and (b) a conductor micropattern disposed on the first surface of the substrate, the conductor micropattern formed by a plurality of traces defining a plurality of open area cells. The micropattern has an open area fraction greater than 80% and a uniform distribution of trace orientation. The traces of the conductor micropattern have a specular reflectance in a direction orthogonal to and toward the first surface of the substrate of less than 50%. Each of the traces has a width from 0.5 to 10 micrometer. The articles are useful in devices such as displays, in particular, touch screen displays useful for mobile hand held devices, tablets and computers. They also find use in antennas and for EMI shields.
    Type: Grant
    Filed: February 1, 2012
    Date of Patent: August 15, 2017
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Matthew H. Frey, Ta-Hua Yu, Kari A. McGee, Hui Luo, William B. Kolb, Brant U. Kolb, Moses M. David, Lijun Zu, Stephen P. Maki
  • Publication number: 20150017386
    Abstract: Material comprising sub-micrometer particles dispersed in a polymeric matrix. The materials are useful in article, for example, for numerous applications including display applications (e.g., liquid crystal displays (LCD), light emitting diode (LED) displays, or plasma displays); light extraction; electromagnetic interference (EMI) shielding, ophthalmic lenses; face shielding lenses or films; window films; antireflection for construction applications, and construction applications or traffic signs.
    Type: Application
    Filed: January 30, 2013
    Publication date: January 15, 2015
    Inventors: William Blake Kolb, Brant U. Kolb, Samuel J. Carpenter, Lindsay E. Corcoran, Taylor K. Hodne, Hui Luo, Kari A. McGee, Ta-Hua Yu, Karan Jindal, Naiyong Jing
  • Publication number: 20150011668
    Abstract: Material comprising submicrometer particles dispersed in a polymeric matrix. The materials are useful in article, for example, for numerous applications including display applications (e.g., liquid crystal displays (LCD), light emitting diode (LED) displays, or plasma displays); light extraction; electromagnetic interference (EMI) shielding, ophthalmic lenses; face shielding lenses or films; window films; antireflection for construction applications; and construction applications or traffic signs.
    Type: Application
    Filed: January 25, 2013
    Publication date: January 8, 2015
    Applicant: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: William B. Kolb, Brant U. Kolb, Samuel J. Carpenter, Lindsay E. Corcoran, Taylor K. Hodne, Hui Luo, Kari A. McGee, Ta-Hua Yu
  • Publication number: 20130299214
    Abstract: The present disclosure provides an article having (a) a substrate having a first nanostructured surface that is antireflective when exposed to air and an opposing second surface; and (b) a conductor micropattern disposed on the first surface of the substrate, the conductor micropattern formed by a plurality of traces defining a plurality of open area cells. The micropattern has an open area fraction greater than 80% and a uniform distribution of trace orientation. The traces of the conductor micropattern have a specular reflectance in a direction orthogonal to and toward the first surface of the substrate of less than 50%. Each of the traces has a width from 0.5 to 10 micrometer. The articles are useful in devices such as displays, in particular, touch screen displays useful for mobile hand held devices, tablets and computers.
    Type: Application
    Filed: February 1, 2012
    Publication date: November 14, 2013
    Applicant: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Matthew H. Frey, Ta-Hua Yu, Kari A. McGee, Hui Luo, William B. Kolb, Brant U. Kolb, Moses M. David, Lijun Zu