Patents by Inventor Kari Heikurinen

Kari Heikurinen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11002293
    Abstract: A compressor rotor for a gas turbine engine includes a hub disposed about an axis of rotation and an outer surface forming a radially inner gaspath boundary, the outer surface defining a nominal hub diameter. A circumferential array of blades extends radially outwardly from the hub. A first inter-blade passage is defined between a first set of adjacent blades and has a first throat area. A second inter-blade passage is defined between a second set of adjacent blades and has a second throat area that is smaller than the first throat area. At least one scoop is disposed in the second inter-blade passage, the scoop defining a cavity extending radially into the outer surface of the hub relative to the nominal hub diameter.
    Type: Grant
    Filed: September 15, 2017
    Date of Patent: May 11, 2021
    Assignee: PRATT & WHITNEY CANADA CORP.
    Inventors: Karan Anand, Farid Abrari, Ernest Adique, Paul Aitchison, Daniel Fudge, Kari Heikurinen, Paul Stone, Tibor Urac, Thomas Veitch
  • Patent number: 10865806
    Abstract: A rotor for a gas turbine engine. The rotor includes blades circumferentially distributed around a hub. The blades have airfoils with a span defined between a root and tip, a chord defined between a leading edge and a trailing edge, and a thickness defined between a pressure side surface and suction side surface. The blades include first blades and second blades. The airfoil of the first blades has a first thickness distribution defining a first natural vibration frequency of the airfoils of the first blades. The airfoil of the second blades has a second thickness distribution defining a second natural vibration frequency different than the first natural vibration frequency. The first thickness distribution is different than the second thickness distribution along a radially-inner half of the span, and the first thickness distribution matches the second thickness distribution along a radially-outer half of the span.
    Type: Grant
    Filed: September 15, 2017
    Date of Patent: December 15, 2020
    Assignee: PRATT & WHITNEY CANADA CORP.
    Inventors: Thomas Veitch, Farid Abrari, Ernest Adique, Daniel Fudge, Kari Heikurinen, Paul Stone, Ignatius Theratil, Peter Townsend, Tibor Urac
  • Patent number: 10837459
    Abstract: A fan for a gas turbine engine comprises blades distributed around a hub. The blades include first and second blades, having geometric parameters and/or material properties that differ from each other to frequency mistune the fan. The blades are distributed about the hub with at least one second blade between adjacent first blades. The leading edge of the airfoil of the second blades is disposed axially aft of the corresponding leading edge of the first blades in at least a portion of the blade span.
    Type: Grant
    Filed: October 6, 2017
    Date of Patent: November 17, 2020
    Assignee: PRATT & WHITNEY CANADA CORP.
    Inventors: Thomas Veitch, Farid Abrari, Ernest Adique, Daniel Fudge, Kari Heikurinen, Paul Stone, Ignatius Theratil, Peter Townsend, Tibor Urac
  • Patent number: 10689987
    Abstract: A compressor rotor for a gas turbine engine has blades circumferentially distributed around and extending a span length from a central hub. The blades include alternating first and second blades having airfoils with corresponding geometric profiles. The airfoil of the first blade has a coating varying in thickness relative to the second blade to provide natural vibration frequencies different between the first and the second blades.
    Type: Grant
    Filed: September 6, 2019
    Date of Patent: June 23, 2020
    Assignee: PRATT & WHITNEY CANADA CORP.
    Inventors: Thomas Veitch, Farid Abrari, Ernest Adique, Paul Aitchison, Daniel Fudge, Kari Heikurinen, Paul Stone, Tibor Urac
  • Publication number: 20200018176
    Abstract: A compressor rotor for a gas turbine engine has blades circumferentially distributed around and extending a span length from a central hub. The blades include alternating first and second blades having airfoils with corresponding geometric profiles. The airfoil of the first blade has a coating varying in thickness relative to the second blade to provide natural vibration frequencies different between the first and the second blades.
    Type: Application
    Filed: September 6, 2019
    Publication date: January 16, 2020
    Inventors: Thomas VEITCH, Farid ABRARI, Ernest ADIQUE, Paul AITCHISON, Daniel FUDGE, Kari HEIKURINEN, Paul STONE, Tibor URAC
  • Patent number: 10443411
    Abstract: A compressor rotor for a gas turbine engine has blades circumferentially distributed around and extending a span length from a central hub. The blades include alternating first and second blades having airfoils with corresponding geometric profiles. The airfoil of the first blade has a coating varying in thickness relative to the second blade to provide natural vibration frequencies different between the first and the second blades.
    Type: Grant
    Filed: September 18, 2017
    Date of Patent: October 15, 2019
    Assignee: PRATT & WHITNEY CANADA CORP.
    Inventors: Thomas Veitch, Farid Abrari, Ernest Adique, Paul Aitchison, Daniel Fudge, Kari Heikurinen, Paul Stone, Tibor Urac
  • Patent number: 10408223
    Abstract: A fan for a turbofan gas turbine engine having a low hub-to-tip ratio is disclosed. The fan includes a rotor hub and a plurality of radially extending fan blades. Each fan blade defines a hub radius (RHUB), which is the radius of the leading edge at the hub relative to a centerline of the fan, and a tip radius (RTIP), which is the radius of the leading edge at a tip of the fan blade relative to the centerline of the fan. The ratio of the hub radius to the tip radius (RHUB/RTIP) is less than 0.29. In a particular embodiment, this ratio is between 0.25 and 0.29. In another particular embodiment, this ratio is less than 0.25.
    Type: Grant
    Filed: June 7, 2017
    Date of Patent: September 10, 2019
    Assignee: PRATT & WHITNEY CANADA CORP.
    Inventors: Kari Heikurinen, Peter Townsend
  • Patent number: 10408231
    Abstract: A rotor for a gas turbine engine comprises a rotor having a hub and blades around the hub, and extending from the hub to tips. The tips include first and second tip portions between their respective tip leading edge and tip trailing edge. Tips are spaced from a rotational axis of the rotor by spans. A mean span of a first tip portion of a first blade is greater than a mean span of a corresponding first tip portion of a second blade. A mean span of a second tip portion the first blade is less than a mean span of a corresponding second tip portion of the second blade.
    Type: Grant
    Filed: September 13, 2017
    Date of Patent: September 10, 2019
    Assignee: PRATT & WHITNEY CANADA CORP.
    Inventors: Thomas Veitch, Farid Abrari, Ernest Adique, Daniel Fudge, Kari Heikurinen, Paul Stone, Ignatius Theratil, Peter Townsend, Tibor Urac
  • Patent number: 10370973
    Abstract: A compressor airfoil of a gas turbine engine includes a pressure side and a suction side of the airfoil extending downstream from a stagnation point, the suction side including a suction side surface portion within a leading edge region, and a main suction side airfoil surface downstream from the suction side surface portion and extending contiguously therewith. The suction side surface portion having a compound curvature profile which includes at least a leading edge having a first curvature profile and a chamfered surface having a second curvature profile different from the first curvature profile. The chamfered surface being contiguous with and extending immediately downstream from the leading edge. The first curvature profile being curved. The second curvature profile of the chamfered surface being substantially flat and defining a substantially straight-line profile in a cross-section transverse to the span-wise axis of the airfoil.
    Type: Grant
    Filed: May 29, 2015
    Date of Patent: August 6, 2019
    Assignee: PRATT & WHITNEY CANADA CORP.
    Inventors: Kari Heikurinen, Ron Dutton
  • Publication number: 20190107123
    Abstract: A fan for a gas turbine engine comprises blades distributed around a hub. The blades include first and second blades, having geometric parameters and/or material properties that differ from each other to frequency mistune the fan. The blades are distributed about the hub with at least one second blade between adjacent first blades. The leading edge of the airfoil of the second blades is disposed axially aft of the corresponding leading edge of the first blades in at least a portion of the blade span.
    Type: Application
    Filed: October 6, 2017
    Publication date: April 11, 2019
    Inventors: Thomas VEITCH, Farid ABRARI, Ernest ADIQUE, Daniel FUDGE, Kari HEIKURINEN, Paul STONE, Ignatius THERATIL, Peter TOWNSEND, Tibor URAC
  • Publication number: 20190085708
    Abstract: A compressor rotor for a gas turbine engine has blades circumferentially distributed around and extending a span length from a central hub. The blades include alternating first and second blades having airfoils with corresponding geometric profiles. The airfoil of the first blade has a coating varying in thickness relative to the second blade to provide natural vibration frequencies different between the first and the second blades.
    Type: Application
    Filed: September 18, 2017
    Publication date: March 21, 2019
    Inventors: Thomas VEITCH, Farid ABRARI, Ernest ADIQUE, Paul AITCHISON, Daniel FUDGE, Kari HEIKURINEN, Paul STONE, Tibor URAC
  • Publication number: 20190085868
    Abstract: A compressor rotor for a gas turbine engine includes a hub disposed about an axis of rotation and an outer surface forming a radially inner gaspath boundary, the outer surface defining a nominal hub diameter. A circumferential array of blades extends radially outwardly from the hub. A first inter-blade passage is defined between a first set of adjacent blades and has a first throat area. A second inter-blade passage is defined between a second set of adjacent blades and has a second throat area that is smaller than the first throat area. At least one scoop is disposed in the second inter-blade passage, the scoop defining a cavity extending radially into the outer surface of the hub relative to the nominal hub diameter.
    Type: Application
    Filed: September 15, 2017
    Publication date: March 21, 2019
    Inventors: Karan ANAND, Farid ABRARI, Ernest ADIQUE, Paul AITCHISON, Daniel FUDGE, Kari HEIKURINEN, Paul STONE, Tibor URAC, Thomas VEITCH
  • Publication number: 20190085704
    Abstract: A rotor for a gas turbine engine. The rotor includes blades circumferentially distributed around a hub. The blades have airfoils with a span defined between a root and tip, a chord defined between a leading edge and a trailing edge, and a thickness defined between a pressure side surface and suction side surface. The blades include first blades and second blades. The airfoil of the first blades has a first thickness distribution defining a first natural vibration frequency of the airfoils of the first blades. The airfoil of the second blades has a second thickness distribution defining a second natural vibration frequency different than the first natural vibration frequency. The first thickness distribution is different than the second thickness distribution along a radially-inner half of the span, and the first thickness distribution matches the second thickness distribution along a radially-outer half of the span.
    Type: Application
    Filed: September 15, 2017
    Publication date: March 21, 2019
    Inventors: Thomas VEITCH, Farid ABRARI, Ernest ADIQUE, Daniel FUDGE, Kari HEIKURINEN, Paul STONE, Ignatius THERATIL, Peter TOWNSEND, Tibor URAC
  • Publication number: 20190078589
    Abstract: A rotor for a gas turbine engine comprises a rotor having a hub and blades around the hub, and extending from the hub to tips. The tips include first and second tip portions between their respective tip leading edge and tip trailing edge. Tips are spaced from a rotational axis of the rotor by spans. A mean span of a first tip portion of a first blade is greater than a mean span of a corresponding first tip portion of a second blade. A mean span of a second tip portion the first blade is less than a mean span of a corresponding second tip portion of the second blade.
    Type: Application
    Filed: September 13, 2017
    Publication date: March 14, 2019
    Inventors: Thomas VEITCH, Farid ABRARI, Ernest ADIQUE, Daniel FUDGE, Kari HEIKURINEN, Paul STONE, Ignatius THERATIL, Peter TOWNSEND, Tibor URAC
  • Patent number: 9759230
    Abstract: A multi-stage axial compressor with an inner wall including a step portion for each of the compressor stages. Each step portion is defined along a respective stage. Each step portion may extend over at least a majority of an axial length of the stage. Each step portion may optionally include a point aligned with a maximum thickness of the airfoil portions of the rotor blades and a point aligned with a maximum thickness of the stator vanes. Adjacent step portions are connected by a transition portion converging toward a central axis of the compressor from the upstream step to the downstream step. Each transition portion has a steeper slope than that of the adjacent step portions. A method of directing flow through a multi-stage axial flow compressor is also discussed.
    Type: Grant
    Filed: January 24, 2014
    Date of Patent: September 12, 2017
    Assignee: PRATT & WHITNEY CANADA CORP.
    Inventors: Kari Heikurinen, Ronald Dutton
  • Publication number: 20160348692
    Abstract: A compressor airfoil of a gas turbine engine includes a pressure side and a suction side of the airfoil extending downstream from a stagnation point, the suction side including a suction side surface portion within a leading edge region, and a main suction side airfoil surface downstream from the suction side surface portion and extending contiguously therewith. The suction side surface portion having a compound curvature profile which includes at least a leading edge having a first curvature profile and a chamfered surface having a second curvature profile different from the first curvature profile. The chamfered surface being contiguous with and extending immediately downstream from the leading edge. The first curvature profile being curved. The second curvature profile of the chamfered surface being substantially flat and defining a substantially straight-line profile in a cross-section transverse to the span-wise axis of the airfoil.
    Type: Application
    Filed: May 29, 2015
    Publication date: December 1, 2016
    Inventors: Kari HEIKURINEN, Ron DUTTON
  • Patent number: 9303589
    Abstract: A fan for a turbofan gas turbine engine, the fan comprising a rotor hub and a plurality of radially extending fan blades integral with the hub to form an integrally bladed rotor. Each fan blade defines a leading edge. A hub radius (RHUB) is the radius of the leading edge at the hub relative to a centerline of the fan. A tip radius (RTIP) is the radius of the leading edge at a tip of the fan blade relative to the centerline of the fan. The ratio of the hub radius to the tip radius (RHUB/RTIP) is at least less than 0.29. In a particular embodiment, this ratio is between 0.25 and 0.29. In another particular embodiment, this ratio is less than or equal to 0.25.
    Type: Grant
    Filed: November 28, 2012
    Date of Patent: April 5, 2016
    Assignee: PRATT & WHITNEY CANADA CORP.
    Inventors: Kari Heikurinen, Peter Townsend
  • Publication number: 20150211546
    Abstract: A multi-stage axial compressor with an inner wall including a step portion for each of the compressor stages. Each step portion is defined along a respective stage. Each step portion may extend over at least a majority of an axial length of the stage. Each step portion may optionally include a point aligned with a maximum thickness of the airfoil portions of the rotor blades and a point aligned with a maximum thickness of the stator vanes. Adjacent step portions are connected by a transition portion converging toward a central axis of the compressor from the upstream step to the downstream step. Each transition portion has a steeper slope than that of the adjacent step portions. A method of directing flow through a multi-stage axial flow compressor is also discussed.
    Type: Application
    Filed: January 24, 2014
    Publication date: July 30, 2015
    Applicant: Pratt & Whitney Canada Corp.
    Inventors: Kari HEIKURINEN, Ronald DUTTON
  • Patent number: 8100655
    Abstract: An airfoil root fillet having a predetermined compound curve profile can be flank milled with a single flank milling cutter having a generally conical flank milling portion and a rounded tip portion defining a compound curve.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: January 24, 2012
    Assignee: Pratt & Whitney Canada Corp.
    Inventors: Paul Stone, Dinesh Chawla, Frank Kelly, Edward Fazari, Kari Heikurinen, Ignatius Theratil
  • Patent number: 8043063
    Abstract: A frequency mistuned integrally bladed rotor (IBR) for a gas turbine engine comprises a hub and a circumferential row of blades of varying frequency projecting integrally from the hub. Each blade in the row alternate with another blade having a different pressure surface definition but similar suction surface, leading edge and trailing edge definitions.
    Type: Grant
    Filed: March 26, 2009
    Date of Patent: October 25, 2011
    Assignee: Pratt & Whitney Canada Corp.
    Inventors: Frank Kelly, Kari Heikurinen, Edward Fazari, Yuhua Wu