Patents by Inventor Karim M. Chehayeb

Karim M. Chehayeb has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11400416
    Abstract: Provided herein are osmotic desalination methods and associated systems. According to certain embodiments, multiple osmotic membranes may be used to perform a series of osmosis steps, such that an output stream having a relatively high water purity—compared to a water purity of an aqueous feed stream—is produced. In some embodiments, multiple draw streams can be used to produce aqueous product streams having sequentially higher purities of water. Certain embodiments are related to osmotic desalination systems and methods in which forward osmosis is used to produce a first product stream having a relatively high water purity relative to an aqueous feed stream, and reverse osmosis is used to perform a second step (and/or additional steps) on the first product stream. In some embodiments, multiple reverse osmosis steps can be used in series to perform a net desalination process.
    Type: Grant
    Filed: November 12, 2019
    Date of Patent: August 2, 2022
    Assignee: Gradiant Corporation
    Inventors: Looh Tchuin Choong, Prakash Narayan Govindan, Maximus G. St. John, Steven Lam, Jonn-Ross Andrews, Karim M. Chehayeb
  • Patent number: 11084736
    Abstract: Systems and methods related to desalination systems are described herein. According to some embodiments, the desalination systems are transiently operated and/or configured to facilitate transient operation. In some embodiments, a liquid stream comprising water and at least one dissolved salt is circulated through a fluidic circuit comprising a desalination system. In some embodiments, a portion of the desalination system (e.g., a humidifier) is configured to remove at least a portion of the water from the liquid stream to produce a concentrated brine stream enriched in the dissolved salt. In certain cases, the concentrated brine stream is recirculated through the fluidic circuit until the concentrated brine stream reaches a relatively high density (e.g., at least about 10 pounds per gallon) and/or a relatively high salinity (e.g., a total dissolved salt concentration of at least about 25 wt %).
    Type: Grant
    Filed: October 9, 2019
    Date of Patent: August 10, 2021
    Assignee: Gradiant Corporation
    Inventors: Prakash Narayan Govindan, Maximus G. St. John, Steven Lam, Mark Zaloudek, Karim M. Chehayeb, Samar Shah
  • Patent number: 11052326
    Abstract: A counter-flow simultaneous heat and mass exchange device is operated by directing flows of two fluids into a heat and mass exchange device at initial mass flow rates where ideal changes in total enthalpy rates of the two fluids are unequal. At least one of the following state variables in the fluids is measured: temperature, pressure and concentration, which together define the thermodynamic state of the two fluid streams at the points of entry to and exit from the device. The mass flow rate of at least one of the two fluids is changed such that the ideal change in total enthalpy rates of the two fluids through the device are brought closer to being equal.
    Type: Grant
    Filed: May 25, 2020
    Date of Patent: July 6, 2021
    Assignee: Gradiant Corporation
    Inventors: Prakash Narayan Govindan, Maximus G. St. John, Karim M. Chehayeb, Steven Lam
  • Publication number: 20200384381
    Abstract: A counter-flow simultaneous heat and mass exchange device is operated by directing flows of two fluids into a heat and mass exchange device at initial mass flow rates where ideal changes in total enthalpy rates of the two fluids are unequal. At least one of the following state variables in the fluids is measured: temperature, pressure and concentration, which together define the thermodynamic state of the two fluid streams at the points of entry to and exit from the device. The mass flow rate of at least one of the two fluids is changed such that the ideal change in total enthalpy rates of the two fluids through the device are brought closer to being equal.
    Type: Application
    Filed: May 25, 2020
    Publication date: December 10, 2020
    Applicant: Gradiant Corporation
    Inventors: Prakash Narayan Govindan, Maximus G. St. John, Karim M. Chehayeb, Steven Lam
  • Patent number: 10688409
    Abstract: A counter-flow simultaneous heat and mass exchange device is operated by directing flows of two fluids into a heat and mass exchange device at initial mass flow rates where ideal changes in total enthalpy rates of the two fluids are unequal. At least one of the following state variables in the fluids is measured: temperature, pressure and concentration, which together define the thermodynamic state of the two fluid streams at the points of entry to and exit from the device. The flow rates of the fluids at the points of entry and/or exit to/from the device are measured; and the mass flow rate of at least one of the two fluids is changed such that the ideal change in total enthalpy rates of the two fluids through the device are brought closer to being equal.
    Type: Grant
    Filed: February 6, 2019
    Date of Patent: June 23, 2020
    Assignee: Gradiant Corporation
    Inventors: Prakash Narayan Govindan, Maximus G. St. John, Karim M. Chehayeb, Steven Lam
  • Publication number: 20200147554
    Abstract: Provided herein are osmotic desalination methods and associated systems. According to certain embodiments, multiple osmotic membranes may be used to perform a series of osmosis steps, such that an output stream having a relatively high water purity—compared to a water purity of an aqueous feed stream—is produced. In some embodiments, multiple draw streams can be used to produce aqueous product streams having sequentially higher purities of water. Certain embodiments are related to osmotic desalination systems and methods in which forward osmosis is used to produce a first product stream having a relatively high water purity relative to an aqueous feed stream, and reverse osmosis is used to perform a second step (and/or additional steps) on the first product stream. In some embodiments, multiple reverse osmosis steps can be used in series to perform a net desalination process.
    Type: Application
    Filed: November 12, 2019
    Publication date: May 14, 2020
    Applicant: Gradiant Corporation
    Inventors: Looh Tchuin Choong, Prakash Narayan Govindan, Maximus G. St. John, Steven Lam, Jonn-Ross Andrews, Karim M. Chehayeb
  • Publication number: 20200109065
    Abstract: Systems and methods related to desalination systems are described herein. According to some embodiments, the desalination systems are transiently operated and/or configured to facilitate transient operation. In some embodiments, a liquid stream comprising water and at least one dissolved salt is circulated through a fluidic circuit comprising a desalination system. In some embodiments, a portion of the desalination system (e.g., a humidifier) is configured to remove at least a portion of the water from the liquid stream to produce a concentrated brine stream enriched in the dissolved salt. In certain cases, the concentrated brine stream is recirculated through the fluidic circuit until the concentrated brine stream reaches a relatively high density (e.g., at least about 10 pounds per gallon) and/or a relatively high salinity (e.g., a total dissolved salt concentration of at least about 25 wt %).
    Type: Application
    Filed: October 9, 2019
    Publication date: April 9, 2020
    Applicant: Gradiant Corporation
    Inventors: Prakash Narayan Govindan, Maximus G. St. John, Steven Lam, Mark Zaloudek, Karim M. Chehayeb, Samar Shah
  • Patent number: 10518221
    Abstract: Provided herein are osmotic desalination methods and associated systems. According to certain embodiments, multiple osmotic membranes may be used to perform a series of osmosis steps, such that an output stream having a relatively high water purity—compared to a water purity of an aqueous feed stream—is produced. In some embodiments, multiple draw streams can be used to produce aqueous product streams having sequentially higher purities of water. Certain embodiments are related to osmotic desalination systems and methods in which forward osmosis is used to produce a first product stream having a relatively high water purity relative to an aqueous feed stream, and reverse osmosis is used to perform a second step (and/or additional steps) on the first product stream. In some embodiments, multiple reverse osmosis steps can be used in series to perform a net desalination process.
    Type: Grant
    Filed: July 29, 2016
    Date of Patent: December 31, 2019
    Assignee: Gradiant Corporation
    Inventors: Looh Tchuin Choong, Prakash Narayan Govindan, Maximus G. St. John, Steven Lam, Jonn-Ross Andrews, Karim M. Chehayeb
  • Patent number: 10479701
    Abstract: Systems and methods related to desalination systems are described herein. According to some embodiments, the desalination systems are transiently operated and/or configured to facilitate transient operation. In some embodiments, a liquid stream comprising water and at least one dissolved salt is circulated through a fluidic circuit comprising a desalination system. In some embodiments, a portion of the desalination system (e.g., a humidifier) is configured to remove at least a portion of the water from the liquid stream to produce a concentrated brine stream enriched in the dissolved salt. In certain cases, the concentrated brine stream is recirculated through the fluidic circuit until the concentrated brine stream reaches a relatively high density (e.g., at least about 10 pounds per gallon) and/or a relatively high salinity (e.g., a total dissolved salt concentration of at least about 25 wt %).
    Type: Grant
    Filed: April 30, 2018
    Date of Patent: November 19, 2019
    Assignee: Gradiant Corporation
    Inventors: Prakash Narayan Govindan, Maximus G. St. John, Steven Lam, Mark Zaloudek, Karim M. Chehayeb, Samar Shah
  • Publication number: 20190209947
    Abstract: A counter-flow simultaneous heat and mass exchange device is operated by directing flows of two fluids into a heat and mass exchange device at initial mass flow rates where ideal changes in total enthalpy rates of the two fluids are unequal. At least one of the following state variables in the fluids is measured: temperature, pressure and concentration, which together define the thermodynamic state of the two fluid streams at the points of entry to and exit from the device. The flow rates of the fluids at the points of entry and/or exit to/from the device are measured; and the mass flow rate of at least one of the two fluids is changed such that the ideal change in total enthalpy rates of the two fluids through the device are brought closer to being equal.
    Type: Application
    Filed: February 6, 2019
    Publication date: July 11, 2019
    Applicant: Gradiant Corporation
    Inventors: Prakash Narayan Govindan, Maximus G. St. John, Karim M. Chehayeb, Steven Lam
  • Patent number: 10239765
    Abstract: A counter-flow simultaneous heat and mass exchange device is operated by directing flows of two fluids into a heat and mass exchange device at initial mass flow rates where ideal changes in total enthalpy rates of the two fluids are unequal. At least one of the following state variables in the fluids is measured: temperature, pressure and concentration, which together define the thermodynamic state of the two fluid streams at the points of entry to and exit from the device. The flow rates of the fluids at the points of entry and/or exit to/from the device are measured; and the mass flow rate of at least one of the two fluids is changed such that the ideal change in total enthalpy rates of the two fluids through the device are brought closer to being equal.
    Type: Grant
    Filed: January 9, 2017
    Date of Patent: March 26, 2019
    Assignee: Gradiant Corporation
    Inventors: Prakash Narayan Govindan, Maximus G. St. John, Karim M. Chehayeb, Steven Lam
  • Patent number: 10179296
    Abstract: Systems and methods related to desalination systems are described herein. According to some embodiments, the desalination systems are transiently operated and/or configured to facilitate transient operation. In some embodiments, a liquid stream comprising water and at least one dissolved salt is circulated through a fluidic circuit comprising a desalination system. In some embodiments, a portion of the desalination system (e.g., a humidifier) is configured to remove at least a portion of the water from the liquid stream to produce a concentrated brine stream enriched in the dissolved salt. In certain cases, the concentrated brine stream is recirculated through the fluidic circuit until the concentrated brine stream reaches a relatively high density (e.g., at least about 10 pounds per gallon) and/or a relatively high salinity (e.g., a total dissolved salt concentration of at least about 25 wt %).
    Type: Grant
    Filed: May 21, 2015
    Date of Patent: January 15, 2019
    Assignee: Gradiant Corporation
    Inventors: Prakash Narayan Govindan, Maximus G. St. John, Steven Lam, Mark Zaloudek, Karim M. Chehayeb, Samar Shah
  • Publication number: 20190009218
    Abstract: Provided herein are osmotic desalination methods and associated systems. According to certain embodiments, multiple osmotic membranes may be used to perform a series of osmosis steps, such that an output stream having a relatively high water purity—compared to a water purity of an aqueous feed stream—is produced. In some embodiments, multiple draw streams can be NI used to produce aqueous product streams having sequentially higher purities of water. Certain embodiments are related to osmotic desalination systems and methods in which forward osmosis is used to produce a first product stream having a relatively high water purity relative to an aqueous feed stream, and reverse osmosis is used to perform a second step (and/or additional steps) on the first product stream. In some embodiments, multiple reverse osmosis steps can be used in series to perform a net desalination process.
    Type: Application
    Filed: July 29, 2016
    Publication date: January 10, 2019
    Applicant: Gradiant Corporation
    Inventors: Looh Tchuin Choong, Prakash Narayan Govindan, Maximus G. St. John, Steven Lam, Jonn-Ross Andrews, Karim M. Chehayeb
  • Publication number: 20190002306
    Abstract: Systems and methods related to desalination systems are described herein. According to some embodiments, the desalination systems are transiently operated and/or configured to facilitate transient operation. In some embodiments, a liquid stream comprising water and at least one dissolved salt is circulated through a fluidic circuit comprising a desalination system. In some embodiments, a portion of the desalination system (e.g., a humidifier) is configured to remove at least a portion of the water from the liquid stream to produce a concentrated brine stream enriched in the dissolved salt. In certain cases, the concentrated brine stream is recirculated through the fluidic circuit until the concentrated brine stream reaches a relatively high density (e.g., at least about 10 pounds per gallon) and/or a relatively high salinity (e.g., a total dissolved salt concentration of at least about 25 wt %).
    Type: Application
    Filed: April 30, 2018
    Publication date: January 3, 2019
    Applicant: Gradiant Corporation
    Inventors: Prakash Narayan Govindan, Maximus G. St. John, Steven Lam, Mark Zaloudek, Karim M. Chehayeb, Samar Shah
  • Patent number: 9981860
    Abstract: Systems and methods related to desalination systems are described herein. According to some embodiments, the desalination systems are transiently operated and/or configured to facilitate transient operation. In some embodiments, a liquid stream comprising water and at least one dissolved salt is circulated through a fluidic circuit comprising a desalination system. In some embodiments, a portion of the desalination system (e.g., a humidifier) is configured to remove at least a portion of the water from the liquid stream to produce a concentrated brine stream enriched in the dissolved salt. In certain cases, the concentrated brine stream is recirculated through the fluidic circuit until the concentrated brine stream reaches a relatively high density (e.g., at least about 10 pounds per gallon) and/or a relatively high salinity (e.g., a total dissolved salt concentration of at least about 25 wt %).
    Type: Grant
    Filed: March 21, 2017
    Date of Patent: May 29, 2018
    Assignee: Gradiant Corporation
    Inventors: Prakash Narayan Govindan, Maximus G. St. John, Steven Lam, Mark Zaloudek, Karim M. Chehayeb, Samar Shah
  • Publication number: 20170203977
    Abstract: Systems and methods related to desalination systems are described herein. According to some embodiments, the desalination systems are transiently operated and/or configured to facilitate transient operation. In some embodiments, a liquid stream comprising water and at least one dissolved salt is circulated through a fluidic circuit comprising a desalination system. In some embodiments, a portion of the desalination system (e.g., a humidifier) is configured to remove at least a portion of the water from the liquid stream to produce a concentrated brine stream enriched in the dissolved salt. In certain cases, the concentrated brine stream is recirculated through the fluidic circuit until the concentrated brine stream reaches a relatively high density (e.g., at least about 10 pounds per gallon) and/or a relatively high salinity (e.g., a total dissolved salt concentration of at least about 25 wt %).
    Type: Application
    Filed: March 21, 2017
    Publication date: July 20, 2017
    Applicant: Gradiant Corporation
    Inventors: Prakash Narayan Govindan, Maximus G. St. John, Steven Lam, Mark Zaloudek, Karim M. Chehayeb, Samar Shah
  • Publication number: 20170113947
    Abstract: A counter-flow simultaneous heat and mass exchange device is operated by directing flows of two fluids into a heat and mass exchange device at initial mass flow rates where ideal changes in total enthalpy rates of the two fluids are unequal. At least one of the following state variables in the fluids is measured: temperature, pressure and concentration, which together define the thermodynamic state of the two fluid streams at the points of entry to and exit from the device. The flow rates of the fluids at the points of entry and/or exit to/from the device are measured; and the mass flow rate of at least one of the two fluids is changed such that the ideal change in total enthalpy rates of the two fluids through the device are brought closer to being equal.
    Type: Application
    Filed: January 9, 2017
    Publication date: April 27, 2017
    Applicant: Gradiant Corporation
    Inventors: Prakash Narayan Govindan, Maximus G. St. John, Karim M. Chehayeb, Steven Lam
  • Patent number: 9617169
    Abstract: Systems and methods related to desalination systems are described herein. According to some embodiments, the desalination systems are transiently operated and/or configured to facilitate transient operation. In some embodiments, a liquid stream comprising water and at least one dissolved salt is circulated through a fluidic circuit comprising a desalination system. In some embodiments, a portion of the desalination system (e.g., a humidifier) is configured to remove at least a portion of the water from the liquid stream to produce a concentrated brine stream enriched in the dissolved salt. In certain cases, the concentrated brine stream is recirculated through the fluidic circuit until the concentrated brine stream reaches a relatively high density (e.g., at least about 10 pounds per gallon) and/or a relatively high salinity (e.g., a total dissolved salt concentration of at least about 25 wt %).
    Type: Grant
    Filed: January 11, 2016
    Date of Patent: April 11, 2017
    Assignee: Gradiant Corporation
    Inventors: Prakash Narayan Govindan, Maximus G. St. John, Steven Lam, Mark Zaloudek, Karim M. Chehayeb, Samar Shah
  • Patent number: 9579590
    Abstract: A counter-flow simultaneous heat and mass exchange device is operated by directing flows of two fluids into a heat and mass exchange device at initial mass flow rates where ideal changes in total enthalpy rates of the two fluids are unequal. At least one of the following state variables in the fluids is measured: temperature, pressure and concentration, which together define the thermodynamic state of the two fluid streams at the points of entry to and exit from the device. The flow rates of the fluids at the points of entry and/or exit to/from the device are measured; and the mass flow rate of at least one of the two fluids is changed such that the ideal change in total enthalpy rates of the two fluids through the device are brought closer to being equal.
    Type: Grant
    Filed: December 18, 2014
    Date of Patent: February 28, 2017
    Assignee: Gradiant Corporation
    Inventors: Prakash Narayan Govindan, Maximus G. St. John, Karim M. Chehayeb, Steven Lam
  • Publication number: 20160340208
    Abstract: Systems and methods related to desalination systems are described herein. According to some embodiments, the desalination systems are transiently operated and/or configured to facilitate transient operation. In some embodiments, a liquid stream comprising water and at least one dissolved salt is circulated through a fluidic circuit comprising a desalination system. In some embodiments, a portion of the desalination system (e.g., a humidifier) is configured to remove at least a portion of the water from the liquid stream to produce a concentrated brine stream enriched in the dissolved salt. In certain cases, the concentrated brine stream is recirculated through the fluidic circuit until the concentrated brine stream reaches a relatively high density (e.g., at least about 10 pounds per gallon) and/or a relatively high salinity (e.g., a total dissolved salt concentration of at least about 25 wt %).
    Type: Application
    Filed: January 11, 2016
    Publication date: November 24, 2016
    Applicant: Gradiant Corporation
    Inventors: Prakash Narayan Govindan, Maximus G. St. John, Steven Lam, Mark Zaloudek, Karim M. Chehayeb, Samar Shah