Patents by Inventor Karin Hinzer

Karin Hinzer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210408825
    Abstract: The measurement of solar irradiance measurement have important applications, including solar resource assessment, solar power plants, photovoltaic system monitoring, heating and cooling loads of buildings, climate modeling and weather forecasting. An option to establish this is to solely measure the global horizontal irradiance and employ an irradiance decomposition algorithm to derive direct normal irradiance and diffuse horizontal irradiance. However, these models vary in complexity and generally have a relatively high uncertainty particularly between latitudes +60° N and ?45° S these errors which includes large portions of North America, Europe, Russia, and Asia where the applications are centered.
    Type: Application
    Filed: June 23, 2021
    Publication date: December 30, 2021
    Inventors: VIKTAR TATSIANKOU, KARIN HINZER, HENRY SCHRIEMER, RICHARD BEAL
  • Publication number: 20210288202
    Abstract: A photovoltaic device comprises at least two sub-cells, at least one connecting element electrically connecting adjacent sub-cells to one another, each sub-cell comprising: at least one segment; and at least one connecting element electrically connecting adjacent segments to one another in the event that a sub-cell has more than one segment; each one of the sub-cells having a unique bandgap and being arranged such that bandgaps of the sub-cells are in descending order with respect to a light incident surface of the photovoltaic device, each sub-cell being designed such that all segments of the photovoltaic device produce approximately the same current.
    Type: Application
    Filed: June 3, 2021
    Publication date: September 16, 2021
    Applicant: THE UNIVERSITY OF OTTAWA
    Inventors: Christopher E. VALDIVIA, Karin HINZER
  • Patent number: 10901161
    Abstract: An optical power transfer device with an embedded active cooling chip is disclosed. The device includes a cooling chip made of a semiconductor material, and a first subassembly and a second subassembly mounted on the cooling chip. The cooling chip comprises at least one metallization layer on a portion of a first surface of the cooling chip, at least one inlet through a second surface of the cooling chip, wherein the second surface is opposite to the first surface, at least one outlet through the second surface and one or more micro-channels extending between and fluidly coupled to the at least one inlet and the at least one outlet. A cooling fluid flows through the one or more micro-channels. The first subassembly is mounted on the at least one metallization layer and comprises a laser. The second subassembly comprises a phototransducer configured to receive a laser beam from the laser.
    Type: Grant
    Filed: September 14, 2018
    Date of Patent: January 26, 2021
    Assignees: TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC., UNIVERSITY OF OTTAWA, BROADCOM INC.
    Inventors: Ercan M. Dede, Christopher Valdivia, Matthew Wilkins, Karin Hinzer, Philippe-Olivier Provost, Denis Masson, Simon Fafard
  • Publication number: 20200144433
    Abstract: A photovoltaic device comprises at least two sub-cells, at least one connecting element electrically connecting adjacent sub-cells to one another, each sub-cell comprising: at least one segment; and at least one connecting element electrically connecting adjacent segments to one another in the event that a sub-cell has more than one segment; each one of the sub-cells having a unique bandgap and being arranged such that bandgaps of the sub-cells are in descending order with respect to a light incident surface of the photovoltaic device, each sub-cell being designed such that all segments of the photovoltaic device produce approximately the same current.
    Type: Application
    Filed: June 22, 2018
    Publication date: May 7, 2020
    Applicant: UNIVERSITY OF OTTAWA
    Inventors: Christopher E. VALDIVIA, Karin HINZER
  • Publication number: 20200091677
    Abstract: An optical power transfer device with an embedded active cooling chip is disclosed. The device includes a cooling chip made of a semiconductor material, and a first subassembly and a second subassembly mounted on the cooling chip. The cooling chip comprises at least one metallization layer on a portion of a first surface of the cooling chip, at least one inlet through a second surface of the cooling chip, wherein the second surface is opposite to the first surface, at least one outlet through the second surface and one or more micro-channels extending between and fluidly coupled to the at least one inlet and the at least one outlet. A cooling fluid flows through the one or more micro-channels. The first subassembly is mounted on the at least one metallization layer and comprises a laser. The second subassembly comprises a phototransducer configured to receive a laser beam from the laser.
    Type: Application
    Filed: September 14, 2018
    Publication date: March 19, 2020
    Applicants: Toyota Motor Engineering & Manufacturing North America, Inc., University of Ottawa, Broadcom Inc.
    Inventors: Ercan M. Dede, Christopher Valdivia, Matthew Wilkins, Karin Hinzer, Philippe-Olivier Provost, Denis Masson, Simon Fafard
  • Publication number: 20050208768
    Abstract: The present invention is a combination of in-situ etching with a grating mask pattern comprised only of semiconductor material, together with the fabrication of a protective layer beneath the semiconductor grating mask that protects the semiconductor material that readily oxidises. As such the present invention is based on a two-stage process. First the grating pattern is defined in a semiconductor material, wherein this pattern is called the semiconductor grating mask. The semiconductor grating mask sits on top of a layer of protective material, which in turn is on top of the semiconductor material that readily oxidises, wherein the protective layer prevents oxidation of the material below. The semiconductor structure is then moved to a reactor, where, in the second stage, the mask pattern is transferred into the underlying protective layer and the semiconductor material that readily oxidises, by in-situ etching.
    Type: Application
    Filed: November 1, 2004
    Publication date: September 22, 2005
    Inventors: Richard Finlay, D. Knight, Darren Goodchild, Karin Hinzer