Patents by Inventor Karin Pickenäcker

Karin Pickenäcker has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8901350
    Abstract: Process for obtaining formic acid by thermal separation of a stream comprising formic acid and a tertiary amine (I), in which a liquid stream comprising formic acid and a tertiary amine (I) in a molar ratio of from 0.5 to 5 is produced by combining tertiary amine (I) and a formic acid source, from 10 to 100% by weight of the secondary components present therein are separated off and formic acid is removed by distillation in a distillation apparatus at a bottom temperature of from 100 to 300° C. and a pressure of from 30 to 3000 hPa abs from the liquid stream obtained, the bottom discharge from the distillation apparatus being separated into two liquid phases and the upper liquid phase being recycled to the formic acid source and the lower liquid phase being recycled for separating off the secondary components and/or to the distillation apparatus.
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: December 2, 2014
    Assignee: BASF SE
    Inventors: Daniel Schneider, Klaus-Dieter Mohl, Martin Schäfer, Karin Pickenäcker, Stefan Rittinger, Thomas Schaub, Joaquim Henrique Teles, Rocco Paciello, Gerd Kaibel
  • Patent number: 8163139
    Abstract: Processes comprising: providing a mixture comprising monoethylene glycol and diethylenetriamine; and subjecting the mixture to extractive distillation with a diethylenetriamine-selective solvent comprising triethylene glycol to provide a first stream comprising monoethylene glycol and a second stream comprising diethylenetriamine; wherein the first stream is substantially free of diethylenetriamine, and wherein the second stream is substantially free of monoethylene glycol.
    Type: Grant
    Filed: February 8, 2007
    Date of Patent: April 24, 2012
    Assignee: BASF SE
    Inventors: Karin Pickenäcker, Johann-Peter Melder, Bram Willem Hoffer, Thomas Krug, Gunther van Cauwenberge, Frank-Friedrich Pape
  • Publication number: 20110319657
    Abstract: Process for obtaining formic acid by thermal separation of a stream comprising formic acid and a tertiary amine (I), in which a liquid stream comprising formic acid and a tertiary amine (I) in a molar ratio of from 0.5 to 5 is produced by combining tertiary amine (I) and a formic acid source, from 10 to 100% by weight of the secondary components present therein are separated off and formic acid is removed by distillation in a distillation apparatus at a bottom temperature of from 100 to 300° C. and a pressure of from 30 to 3000 hPa abs from the liquid stream obtained, the bottom discharge from the distillation apparatus being separated into two liquid phases and the upper liquid phase being recycled to the formic acid source and the lower liquid phase being recycled for separating off the secondary components and/or to the distillation apparatus.
    Type: Application
    Filed: June 29, 2011
    Publication date: December 29, 2011
    Applicant: BASF SE
    Inventors: Daniel Schneider, Klaus-Dieter Mohl, Martin Schäfer, Karin Pickenäcker, Stefan Rittinger, Thomas Schaub, Joaquim Henrique Teles, Rocco Paciello, Gerd Kaibel
  • Patent number: 7700806
    Abstract: A process for preparing ethylene amines and ethanolamines by hydrogenative amination of monoethylene glycol and ammonia in the presence of a catalyst, wherein the process is carried out in two process stages in which in the first process stage, the amination is carried out over a hydroamination catalyst to a monoethylene glycol conversion of not more than 40% and in the second process stage, a supported catalyst having an active composition comprising ruthenium and cobalt and no further additional metal of group VIII and also no metal of group IB is used in the form of shaped catalyst bodies which in the case of a spherical shape or rod shape in each case have a diameter of <3 mm, in the case of a pellet shape have a height of <3 mm and in the case of all other geometries in each case have an equivalent diameter L=1/a? of <0.70 mm, is proposed.
    Type: Grant
    Filed: February 5, 2007
    Date of Patent: April 20, 2010
    Assignee: BASF Aktiengesellschaft
    Inventors: Gunther van Cauwenberge, Johann-Peter Melder, Bram Willem Hoffer, Thomas Krug, Karin Pickenäcker, Frank-Friedrich Pape, Ekkehard Schwab
  • Patent number: 7635790
    Abstract: A process for preparing ethylene amines and ethanolamines by hydrogenative amination of monoethylene glycol and ammonia in the presence of a catalyst, wherein a catalyst having an active composition comprising ruthenium and cobalt and no further additional metal of group VIII and also no metal of group IB is used in the form of shaped catalyst bodies which in the case of a spherical shape or rod shape in each case have a diameter of <3 mm, in the case of a pellet shape have a height of <3 mm and in the case of all other geometries in each case have an equivalent diameter L=1/a? of <0.70 mm, where a? is the external surface area per unit volume (mms2/mmp3) and: a ? = Ap Vp where Ap is the external surface area of the shaped catalyst body (mms2) and Vp is the volume of the shaped catalyst body (mmp3), is proposed.
    Type: Grant
    Filed: February 8, 2007
    Date of Patent: December 22, 2009
    Assignee: BASF SE
    Inventors: Gunther van Cauwenberge, Johann-Peter Melder, Bram Willem Hoffer, Thomas Krug, Karin Pickenäcker, Frank-Friedrich Pape, Ekkehard Schwab
  • Publication number: 20090240084
    Abstract: A process for preparing ethylene amines and ethanolamines by hydrogenative amination of monoethylene glycol and ammonia in the presence of a catalyst, wherein the process is carried out in two process stages in which in the first process stage, the amination is carried out over a hydroamination catalyst to a monoethylene glycol conversion of not more than 40% and in the second process stage, a supported catalyst having an active composition comprising ruthenium and cobalt and no further additional metal of group VIII and also no metal of group IB is used in the form of shaped catalyst bodies which in the case of a spherical shape or rod shape in each case have a diameter of <3 mm, in the case of a pellet shape have a height of <3 mm and in the case of all other geometries in each case have an equivalent diameter L=1/a? of <0.70 mm, is proposed.
    Type: Application
    Filed: February 5, 2007
    Publication date: September 24, 2009
    Applicant: BASF SE
    Inventors: Gunther van Cauwenberge, Johann-Peter Melder, Bram Willem Hoffer, Thomas Krug, Karin Pickenäcker, Frank-Friedrich Pape, Ekkehard Schwab
  • Publication number: 20090030237
    Abstract: A process for preparing ethylene amines and ethanolamines by hydrogenative amination of monoethylene glycol and ammonia in the presence of a catalyst, wherein a catalyst having an active composition comprising ruthenium and cobalt and no further additional metal of group VIII and also no metal of group IB is used in the form of shaped catalyst bodies which in the case of a spherical shape or rod shape in each case have a diameter of <3 mm, in the case of a pellet shape have a height of <3 mm and in the case of all other geometries in each case have an equivalent diameter L=1/a? of <0.70 mm, where a? is the external surface area per unit volume (mms2/mmp3) and: a ? = Ap Vp where Ap is the external surface area of the shaped catalyst body (mms2) and Vp is the volume of the shaped catalyst body (mmp3), is proposed.
    Type: Application
    Filed: February 8, 2007
    Publication date: January 29, 2009
    Applicant: BASF SE
    Inventors: Gunther van Cauwenberge, Johann-Peter Melder, Bram Willem Hoffer, Thomas Krug, Karin Pickenaecker, Frank-Friedrich Pape, Ekkehard Schwab
  • Publication number: 20030181772
    Abstract: In a process for the work-up of a C4 fraction, comprising the process steps
    Type: Application
    Filed: November 12, 2002
    Publication date: September 25, 2003
    Inventors: Gerald Meyer, Gerd Kaibel, Gerd Bohner, Klaus Kindler, Till Adrian, Karin Pickenaecker, Melanie Pahl, Thomas Hill