Patents by Inventor Karl Abraham Keyzer

Karl Abraham Keyzer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11668835
    Abstract: Systems and methods for GNSS spoofing detection using C/No based monitoring are provided. In certain embodiments, a system including at least one GNSS receiver that provides C/No for GNSS signals received from GNSS satellites. The system also includes a processor coupled to the at least one GNSS receiver. The processor executes instructions that cause the processor to calculate new C/No comparison values based on the C/No measurements and previous C/No comparison values. Further, the instructions cause the processor to compare the C/No measurements against the previous C/No comparison values. Moreover, the instructions cause the processor to determine whether one or more of the GNSS signals are spoofed based on the comparison of the C/No measurements against the previous C/No comparison values. Additionally, the instructions cause the processor to set the new C/No comparison values as the previous C/No comparison values.
    Type: Grant
    Filed: July 23, 2020
    Date of Patent: June 6, 2023
    Assignee: Honeywell International Inc.
    Inventors: Anthony Pritchard, Karl Abraham Keyzer, James Arthur McDonald
  • Patent number: 11585941
    Abstract: Techniques for detecting GNSS spoofing using inertial mixing data are disclosed. One or more navigation parameters are determined by at least one GNSS receiver and a plurality of IRS from at least two periods of time. The navigation parameters from the GNSS receiver(s) and the IRS are compared at each time period, and the difference(s) between the compared navigation parameters are further compared to generate at least one differential value. A system can detect GNSS spoofing by comparing the at least one differential value to a suitable threshold. In one aspect each IRS navigation parameter is compared with a corresponding GNSS navigation parameter, wherein the plurality of differential values is mixed before threshold comparison. In another aspect, each IRS navigation parameter is mixed before comparison with a GNSS navigation parameter, and the resulting differential value is then compared against a threshold.
    Type: Grant
    Filed: September 16, 2020
    Date of Patent: February 21, 2023
    Assignee: Honeywell International Inc.
    Inventors: Gary Duane Lemke, Karl Abraham Keyzer, Mark A. Ahlbrecht, James Arthur McDonald
  • Patent number: 11385356
    Abstract: A spoofing detection system including at least one antenna, a receiver and a controller is provided. The at least one receiver is in communication with the at least one antenna to receive detected satellite signals. The controller is configured to determine raw pseudorange values from the received satellite signals. The controller is further configured to apply at least one first filter on the raw pseudorange values to generate at least an output of first filtered pseudorange values. The controller is also conjured to compare an output of the first filtered pseudorange values with one of the raw pseudorange values and second filtered pseudorange values from a second filter. The controller is further configured to determine if spoofing is present in the received satellite signals based on a determined divergence between the output of first filtered pseudorange values and one of the raw pseudorange values and the second filtered pseudorange values.
    Type: Grant
    Filed: July 23, 2020
    Date of Patent: July 12, 2022
    Assignee: Honeywell International Inc.
    Inventors: James Arthur McDonald, Karl Abraham Keyzer, Anthony Pritchard
  • Publication number: 20220082704
    Abstract: Techniques for detecting GNSS spoofing using inertial mixing data are disclosed. One or more navigation parameters are determined by at least one GNSS receiver and a plurality of IRS from at least two periods of time. The navigation parameters from the GNSS receiver(s) and the IRS are compared at each time period, and the difference(s) between the compared navigation parameters are further compared to generate at least one differential value. A system can detect GNSS spoofing by comparing the at least one differential value to a suitable threshold. In one aspect each IRS navigation parameter is compared with a corresponding GNSS navigation parameter, wherein the plurality of differential values is mixed before threshold comparison. In another aspect, each IRS navigation parameter is mixed before comparison with a GNSS navigation parameter, and the resulting differential value is then compared against a threshold.
    Type: Application
    Filed: September 16, 2020
    Publication date: March 17, 2022
    Applicant: Honeywell International Inc.
    Inventors: Gary Duane Lemke, Karl Abraham Keyzer, Mark A. Ahlbrecht, James Arthur McDonald
  • Publication number: 20220057526
    Abstract: A system for detecting satellite signal spoofing using error state estimates is provided. The system includes at least one satellite receiver to receive satellite signals, at least one memory and at least one controller. The at least one memory is configured to store at least operation instructions. The at least one controller is in communication with the at least one satellite receiver and the at least one memory. The at least one controller is configured to determine state estimates from the received satellite signals. The at least one controller is further configured to determine error state estimates based at least in part on differences in current state estimates and differences in delayed state estimates. The controller further configured to determine if spoofing is occurring in one more of the received satellite signals when the error state estimates are greater than a select threshold.
    Type: Application
    Filed: August 21, 2020
    Publication date: February 24, 2022
    Applicant: Honeywell International Inc.
    Inventors: Karl Abraham Keyzer, James Arthur McDonald, Anthony Pritchard
  • Publication number: 20220026578
    Abstract: Systems and methods for GNSS spoofing detection using C/No based monitoring are provided. In certain embodiments, a system including at least one GNSS receiver that provides C/No for GNSS signals received from GNSS satellites. The system also includes a processor coupled to the at least one GNSS receiver. The processor executes instructions that cause the processor to calculate new C/No comparison values based on the C/No measurements and previous C/No comparison values. Further, the instructions cause the processor to compare the C/No measurements against the previous C/No comparison values. Moreover, the instructions cause the processor to determine whether one or more of the GNSS signals are spoofed based on the comparison of the C/No measurements against the previous C/No comparison values. Additionally, the instructions cause the processor to set the new C/No comparison values as the previous C/No comparison values.
    Type: Application
    Filed: July 23, 2020
    Publication date: January 27, 2022
    Applicant: Honeywell International Inc.
    Inventors: Anthony Pritchard, Karl Abraham Keyzer, James Arthur McDonald
  • Publication number: 20220026579
    Abstract: A spoofing detection system including at least one antenna, a receiver and a controller is provided. The at least one receiver is in communication with the at least one antenna to receive detected satellite signals. The controller is configured to determine raw pseudorange values from the received satellite signals. The controller is further configured to apply at least one first filter on the raw pseudorange values to generate at least an output of first filtered pseudorange values. The controller is also conjured to compare an output of the first filtered pseudorange values with one of the raw pseudorange values and second filtered pseudorange values from a second filter. The controller is further configured to determine if spoofing is present in the received satellite signals based on a determined divergence between the output of first filtered pseudorange values and one of the raw pseudorange values and the second filtered pseudorange values.
    Type: Application
    Filed: July 23, 2020
    Publication date: January 27, 2022
    Applicant: Honeywell International Inc.
    Inventors: James Arthur McDonald, Karl Abraham Keyzer, Anthony Pritchard