Patents by Inventor Karl Deisseroth

Karl Deisseroth has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10495554
    Abstract: The present disclosure provides methods of preparing a biological specimen for imaging analysis, comprising fixing and clearing the biological specimen and subsequently analyzing the cleared biological specimen using microscopy. Also included are methods of quantifying cells, for example, active populations of cells in response to a stimulant. The present disclosure also provides devices for practicing the described methods. A flow-assisted clearing device provides rapid clearing of hydrogel-embedded biological specimens without the need of specialized equipment such as electrophoresis or perfusion devices.
    Type: Grant
    Filed: May 25, 2017
    Date of Patent: December 3, 2019
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Karl A. Deisseroth, William E. Allen, Brian Hsueh, Li Ye
  • Patent number: 10478499
    Abstract: Aspects of the disclosure include compositions, devices, systems and methods for optogenetic modulation of action potentials in target cells. The subject devices include light-generating devices, control devices, and delivery devices for delivering light-responsive polypeptides, or nucleic acids encoding same, to target cells. The subject compositions and systems include light-activated polypeptides, nucleic acids comprising nucleotide sequences encoding these polypeptides, as well as expression systems that facilitate expression of these polypeptides in target cells. Also provided are methods of using the subject devices and systems to optogenetically manipulate action potentials in target cells, e.g., to treat a neurological or psychiatric condition in a human or animal subject.
    Type: Grant
    Filed: August 7, 2018
    Date of Patent: November 19, 2019
    Assignee: The Board of the Trustees of the Leland Stanford Junior University
    Inventors: Karl A. Deisseroth, Soo Yeun Lee, Charu Ramakrishnan, Andre Berndt
  • Publication number: 20190336784
    Abstract: Methods, systems and devices are implemented in connection with light-responsive ion channel molecules. One such method is implemented using a light-activated ion channel molecule that responds to a light stimulus. The method includes engineering the light-activated ion channel molecule in a cell; and activating the ion channel molecule, in response to light stimulus that is provided to the ion channel molecule and that has properties that do not activate a ChR2 ion channel, to allow ions to pass through the light-activated ion channel molecule.
    Type: Application
    Filed: May 17, 2019
    Publication date: November 7, 2019
    Inventors: Karl Deisseroth, Feng Zhang, Viviana Gradinaru
  • Publication number: 20190321651
    Abstract: Stimulation of target cells using light, e.g., in vivo, is implemented using a variety of methods and devices. According to an example embodiment of the present invention, target cells are stimulated using an implantable arrangement. The arrangement includes an electrical light-generation means for generating light and a biological portion. The biological portion has a photosensitive bio-molecular arrangement that responds to the generated light by stimulating target cells in vivo.
    Type: Application
    Filed: May 6, 2019
    Publication date: October 24, 2019
    Inventors: Karl Deisseroth, Michael Bret Schneider, David J. Mishelevich
  • Patent number: 10451608
    Abstract: A variety of applications, systems, methods and constructs are implemented for use in connection with screening of ion-channel modulators. Consistent with one such system, drug candidates are screened to identify their effects on cell membrane ion channels and pumps. The system includes screening cells having light responsive membrane ion switches, voltage-gated ion switches and fluorescence producing voltage sensors. A chemical delivery device introduces the drug candidates to be screened. An optical delivery device activates the light responsive ion switches. An optical sensor monitors fluorescence produced by the voltage sensors. A processor processes data received from the optical sensor. A memory stores the data received from the optical sensor.
    Type: Grant
    Filed: May 12, 2016
    Date of Patent: October 22, 2019
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Karl Deisseroth, Feng Zhang, Viviana Gradinaru, M. Bret Schneider
  • Patent number: 10435709
    Abstract: A nucleic acid containing a dopamine receptor type 2-specific promoter (D2SP) is provided. In certain embodiments, the nucleic acid includes a dopamine receptor type 2-specific promoter (D2SP), wherein the D2SP does not include exon 1 of a D2 receptor gene, wherein the D2SP comprises a Kozak sequence, and wherein the D2SP includes a nucleotide sequence having at least 95% sequence identity to the nucleotide sequence set forth in SEQ ID NO: 1. Also provided are expression vectors, genetically modified host cells and kits that include the subject nucleic acid.
    Type: Grant
    Filed: December 3, 2015
    Date of Patent: October 8, 2019
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Karl A. Deisseroth, Charu Ramakrishnan, Kelly Zalocusky
  • Patent number: 10434327
    Abstract: Various systems and methods are implemented for in vivo use in a living animal. One such method involves stimulating target cells having light-responsive proteins and includes providing an elongated light-delivery structure in a narrow passageway in the animal, the elongated light-delivery structure having separately-activatable light sources located along the length of the elongated light-delivery structure. The method also includes activating less than all the light sources to deliver light to light-responsive proteins adjacent to the activated light sources along the length of the elongated light-delivery structure, thereby stimulating target cells in vivo.
    Type: Grant
    Filed: October 31, 2008
    Date of Patent: October 8, 2019
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Karl Deisseroth, M. Bret Schneider
  • Patent number: 10434329
    Abstract: A power transmitter is provided that can include a microwave cavity resonant at a desired operating frequency, a hexagonal mesh top to leak evanescent fields out of the cavity, and a plurality of orthogonal monopole feeds with 90 degrees phase differences creating circularly polarized waves. The power transmitter can be configured to transmit energy to a wireless device implanted in an animal passing through the evanescent fields. Implantable devices are also described which can receive wireless energy from the power transmitter and stimulate the animals (e.g., optogenetic or electrical stimulation).
    Type: Grant
    Filed: March 25, 2015
    Date of Patent: October 8, 2019
    Assignee: THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY
    Inventors: Ada Shuk Yan Poon, John S. Y. Ho, Yuji Tanabe, Alexander J. Yeh, Kate L. Montgomery, Logan Grosenick, Emily A. Ferenczi, Vivien Tsao, Shrivats Mohan Iyer, Scott Lee Delp, Karl Deisseroth
  • Patent number: 10426970
    Abstract: Various systems and methods are implemented for in vivo use in a living animal. One such method involves stimulating target cells having light-responsive proteins and includes providing an elongated light-delivery structure in a narrow passageway in the animal, the elongated light-delivery structure having separately-activatable light sources located along the length of the elongated light-delivery structure. The method also includes activating less than all the light sources to deliver light to light-responsive proteins adjacent to the activated light sources along the length of the elongated light-delivery structure, thereby stimulating target cells in vivo.
    Type: Grant
    Filed: March 26, 2013
    Date of Patent: October 1, 2019
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Karl Deisseroth, M. Bret Schneider
  • Patent number: 10422803
    Abstract: The present invention provides compositions and methods for light-activated cation channel proteins and their uses within cell membranes and subcellular regions. The invention provides for proteins, nucleic acids, vectors and methods for genetically targeted expression of light-activated cation channels to specific cells or defined cell populations. In particular the invention provides millisecond-timescale temporal control of cation channels using moderate light intensities in cells, cell lines, transgenic animals, and humans. The invention provides for optically generating electrical spikes in nerve cells and other excitable cells useful for driving neuronal networks, drug screening, and therapy.
    Type: Grant
    Filed: March 2, 2016
    Date of Patent: September 24, 2019
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Karl Deisseroth, Edward S. Boyden
  • Publication number: 20190257724
    Abstract: Compositions and methods are provided for TEMPEST (Target-Element Modification by Physical and Enduring Structural Transmutation), a method for creating durable structures in vivo in a cell-type and/or circuit specific manner via the use of insoluble polymers. TEMPEST provides a way to functionally remove cells while preserving their “shadow” for easy post-experiment detection and classification. The method of the invention are of particular interest for modifying neurons, which may be central nervous system or peripheral nervous system cells, however the approach may be applied to other cellular systems as well, either in culture system models or in animals.
    Type: Application
    Filed: October 3, 2018
    Publication date: August 22, 2019
    Inventors: Karl A. Deisseroth, Viviana Gradinaru
  • Publication number: 20190241627
    Abstract: Provided herein are compositions comprising light-activated chimeric proteins expressed on plasma membranes and methods of using the same to selectively depolarize excitatory or inhibitory neurons.
    Type: Application
    Filed: December 5, 2018
    Publication date: August 8, 2019
    Inventors: Karl Deisseroth, Ofer Yizhar, Lief Fenno, Peter Hegemann, Matthias Prigge
  • Publication number: 20190240500
    Abstract: Configurations are described for utilizing light-activated proteins within cell membranes and subcellular regions to assist with medical treatment paradigms, such as hypertension treatment via anatomically specific and temporally precise modulation of renal plexus activity. The invention provides for proteins, nucleic acids, vectors and methods for genetically targeted expression of light-sensitve proteins to specific cells or defined cell populations. In particular the invention provides systems, devices, and methods for millisecond-timescale temporal control of certain cell activities using moderate light intensities, such as the generation or inhibition of electrical spikes in nerve cells and other excitable cells.
    Type: Application
    Filed: April 18, 2019
    Publication date: August 8, 2019
    Applicant: Circuit Therapeutics, Inc.
    Inventors: David C. Lundmark, Karl Deisseroth, Fred Moll, Dan Andersen, Alexander K. Arrow
  • Patent number: 10369378
    Abstract: Various systems and methods are implemented for controlling stimulus of a cell. One such method is implemented for optical stimulation of a cell expressing an NpHR ion pump. The method includes the step of providing a sequence of stimuli to the cell. Each stimulus increases the probability of depolarization events occurring in the cell. Light is provided to the cell to activate the expressed NpHR ion pump, thereby decreasing the probability of depolarization events occurring in the cell.
    Type: Grant
    Filed: September 10, 2018
    Date of Patent: August 6, 2019
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Karl Deisseroth, Feng Zhang, Edward Boyden
  • Patent number: 10371776
    Abstract: Disclosed herein are systems and methods involving the use of magnetic resonance imaging and optogenetic neural stimulation. Aspects of the disclosure include modifying a target neural cell population in a first region of a brain to express light-responsive molecules. Using a light pulse, the light-responsive molecules in the target neural cell population are stimulated. Multiple regions of the brain are scanned via magnetic resonance imaging. The scans allow for observation of a neural reaction in response to the stimulation in at least one of the multiple regions of the brain.
    Type: Grant
    Filed: May 18, 2018
    Date of Patent: August 6, 2019
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Karl Deisseroth, Jin Hyung Lee
  • Publication number: 20190224493
    Abstract: Stimulation of target cells using light, e.g., in vivo or in vitro, is implemented using a variety of methods and devices. One example involves a vector for delivering a light-activated NpHR-based molecule comprising a nucleic acid sequence that codes for light-activated NpHR-based molecule and a promoter. Either a high expression of the molecule manifests a toxicity level that is less than about 75%, or the light-activated NpHR-based proteins are expressed using at least two NpHR-based molecular variants. Each of the variants characterized in being useful for expressing a light-activated NpHR-based molecule that responds to light by producing an inhibitory current to dissuade depolarization of the neuron. Other aspects and embodiments are directed to systems, methods, kits, compositions of matter and molecules for ion pumps or for controlling inhibitory currents in a cell (e.g., in in vivo and in vitro environments).
    Type: Application
    Filed: January 29, 2019
    Publication date: July 25, 2019
    Inventors: Karl Deisseroth, Feng Zhang, Viviana Gradinaru
  • Publication number: 20190224492
    Abstract: Configurations are described for utilizing light-activated proteins within cell membranes and subcellular regions to assist with medical treatment paradigms, such as hypertension treatment via anatomically specific and temporally precise modulation of renal plexus activity. The invention provides for proteins, nucleic acids, vectors and methods for genetically targeted expression of light-sensitive proteins to specific cells or defined cell populations. In particular the invention provides systems, devices, and methods for millisecond-timescale temporal control of certain cell activities using moderate light intensities, such as the generation or inhibition of electrical spikes in nerve cells and other excitable cells.
    Type: Application
    Filed: April 4, 2019
    Publication date: July 25, 2019
    Applicant: Circuit Therapeutics, Inc.
    Inventors: Scott Delp, Karl Deisseroth, Dan Andersen
  • Publication number: 20190217118
    Abstract: Provided herein are compositions comprising lanthanide-doped nanoparticles which upconvert electromagnetic radiation from infrared or near infrared wavelengths into the visible light spectrum. Also provided herein are methods activating light-responsive opsin proteins expressed on plasma membranes of neurons and selectively altering the membrane polarization state of the neurons using the light delivered by the lanthanide-doped nanoparticles.
    Type: Application
    Filed: February 4, 2019
    Publication date: July 18, 2019
    Inventors: Karl Deisseroth, Polina Anikeeva
  • Patent number: 10350430
    Abstract: Methods, systems and devices are implemented in connection with light-responsive ion channel molecules. One such method is implemented using a light-activated ion channel molecule that responds to a light stimulus. The method includes engineering the light-activated ion channel molecule in a cell; and activating the ion channel molecule, in response to light stimulus that is provided to the ion channel molecule and that has properties that do not activate a ChR2 ion channel, to allow ions to pass through the light-activated ion channel molecule.
    Type: Grant
    Filed: January 3, 2018
    Date of Patent: July 16, 2019
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Karl Deisseroth, Feng Zhang, Viviana Gradinaru
  • Publication number: 20190187161
    Abstract: Aspects of the present disclosure include a method for visualizing a fiber-like structure in a biological specimen, the method comprising: clearing the biological specimen comprising a fiber-like structure, wherein the fiber-like structure is detectably labeled; illuminating the cleared biological specimen with two light sheets from a first side and a second side to produce an image volume, wherein the second side is opposite to the first side and wherein the image volume comprises a representation of the fiber-like structure; defining a plurality of voxels within the representation of the fiber-like structure; processing each of the plurality of voxels to estimate a plurality of principal fiber-like structure orientations; and defining a starting point on the representation of the fiber-like structure and propagating a plurality of stream-lines from the starting point, according to the plurality of principal fiber-like structure
    Type: Application
    Filed: May 24, 2017
    Publication date: June 20, 2019
    Inventors: Karl A. Deisseroth, Li Ye, Jennifer McNab, Qiyuan Tian