Patents by Inventor Karl E. Stahlkopf

Karl E. Stahlkopf has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8240142
    Abstract: A compressed-air energy storage system according to embodiments of the present invention comprises a reversible mechanism to compress and expand air, one or more compressed air storage tanks, a control system, one or more heat exchangers, and, in certain embodiments of the invention, a motor-generator. The reversible air compressor-expander uses mechanical power to compress air (when it is acting as a compressor) and converts the energy stored in compressed air to mechanical power (when it is acting as an expander). In certain embodiments, the compressor-expander comprises one or more stages, each stage consisting of pressure vessel (the “pressure cell”) partially filled with water or other liquid. In some embodiments, the pressure vessel communicates with one or more cylinder devices to exchange air and liquid with the cylinder chamber(s) thereof. Suitable valving allows air to enter and leave the pressure cell and cylinder device, if present, under electronic control.
    Type: Grant
    Filed: August 2, 2011
    Date of Patent: August 14, 2012
    Assignee: Lightsail Energy Inc.
    Inventors: Danielle A. Fong, Stephen E. Crane, Edwin P. Berlin, Jr., AmirHossein Pourmousa Abkenar, Kartikeya Mahalatkar, Yongxi Hou, Todd Bowers, Karl E. Stahlkopf
  • Patent number: 8215105
    Abstract: A compressed-air energy storage system according to embodiments of the present invention comprises a reversible mechanism to compress and expand air, one or more compressed air storage tanks, a control system, one or more heat exchangers, and, in certain embodiments of the invention, a motor-generator. The reversible air compressor-expander uses mechanical power to compress air (when it is acting as a compressor) and converts the energy stored in compressed air to mechanical power (when it is acting as an expander). In certain embodiments, the compressor-expander comprises one or more stages, each stage consisting of pressure vessel (the “pressure cell”) partially filled with water or other liquid. In some embodiments, the pressure vessel communicates with one or more cylinder devices to exchange air and liquid with the cylinder chamber(s) thereof. Suitable valving allows air to enter and leave the pressure cell and cylinder device, if present, under electronic control.
    Type: Grant
    Filed: August 25, 2010
    Date of Patent: July 10, 2012
    Assignee: Lightsail Energy Inc.
    Inventors: Danielle A. Fong, Stephen E. Crane, Edwin P. Berlin, Jr., AmirHossein Pourmousa Abkenar, Kartikeya Mahalatkar, Yongxi Hou, Todd Bowers, Karl E. Stahlkopf
  • Patent number: 8201402
    Abstract: A compressed-air energy storage system according to embodiments of the present invention comprises a reversible mechanism to compress and expand air, one or more compressed air storage tanks, a control system, one or more heat exchangers, and, in certain embodiments of the invention, a motor-generator. The reversible air compressor-expander uses mechanical power to compress air (when it is acting as a compressor) and converts the energy stored in compressed air to mechanical power (when it is acting as an expander). In certain embodiments, the compressor-expander comprises one or more stages, each stage consisting of pressure vessel (the “pressure cell”) partially filled with water or other liquid. In some embodiments, the pressure vessel communicates with one or more cylinder devices to exchange air and liquid with the cylinder chamber(s) thereof. Suitable valving allows air to enter and leave the pressure cell and cylinder device, if present, under electronic control.
    Type: Grant
    Filed: August 25, 2010
    Date of Patent: June 19, 2012
    Assignee: Lightsail Energy, Inc.
    Inventors: Danielle A. Fong, Stephen E. Crane, Edwin P. Berlin, Jr., AmirHossein Pourmousa Abkenar, Kartikeya Mahalatkar, Yongxi Hou, Todd Bowers, Karl E. Stahlkopf
  • Patent number: 8196395
    Abstract: A compressed-air energy storage system according to embodiments of the present invention comprises a reversible mechanism to compress and expand air, one or more compressed air storage tanks, a control system, one or more heat exchangers, and, in certain embodiments of the invention, a motor-generator. The reversible air compressor-expander uses mechanical power to compress air (when it is acting as a compressor) and converts the energy stored in compressed air to mechanical power (when it is acting as an expander). In certain embodiments, the compressor-expander comprises one or more stages, each stage consisting of pressure vessel (the “pressure cell”) partially filled with water or other liquid. In some embodiments, the pressure vessel communicates with one or more cylinder devices to exchange air and liquid with the cylinder chamber(s) thereof. Suitable valving allows air to enter and leave the pressure cell and cylinder device, if present, under electronic control.
    Type: Grant
    Filed: June 25, 2010
    Date of Patent: June 12, 2012
    Assignee: Lightsail Energy, Inc.
    Inventors: Danielle A. Fong, Stephen E. Crane, Edwin P. Berlin, Jr., AmirHossein Pourmousa Abkenar, Kartikeya Mahalatkar, Yongxi Hou, Todd Bowers, Karl E. Stahlkopf
  • Patent number: 8191361
    Abstract: A compressed-air energy storage system according to embodiments of the present invention comprises a reversible mechanism to compress and expand air, one or more compressed air storage tanks, a control system, one or more heat exchangers, and, in certain embodiments of the invention, a motor-generator. The reversible air compressor-expander uses mechanical power to compress air (when it is acting as a compressor) and converts the energy stored in compressed air to mechanical power (when it is acting as an expander). In certain embodiments, the compressor-expander comprises one or more stages, each stage consisting of pressure vessel (the “pressure cell”) partially filled with water or other liquid. In some embodiments, the pressure vessel communicates with one or more cylinder devices to exchange air and liquid with the cylinder chamber(s) thereof. Suitable valving allows air to enter and leave the pressure cell and cylinder device, if present, under electronic control.
    Type: Grant
    Filed: August 25, 2010
    Date of Patent: June 5, 2012
    Assignee: Lightsail Energy, Inc.
    Inventors: Danielle A. Fong, Stephen E. Crane, Edwin P. Berlin, Jr., AmirHossein Pourmousa Abkenar, Kartikeya Mahalatkar, Yongxi Hou, Todd Bowers, Karl E. Stahlkopf
  • Patent number: 8065874
    Abstract: A compressed-air energy storage system according to embodiments of the present invention comprises a reversible mechanism to compress and expand air, one or more compressed air storage tanks, a control system, one or more heat exchangers, and, in certain embodiments of the invention, a motor-generator. The reversible air compressor-expander uses mechanical power to compress air (when it is acting as a compressor) and converts the energy stored in compressed air to mechanical power (when it is acting as an expander). In certain embodiments, the compressor-expander comprises one or more stages, each stage consisting of pressure vessel (the “pressure cell”) partially filled with water or other liquid. In some embodiments, the pressure vessel communicates with one or more cylinder devices to exchange air and liquid with the cylinder chamber(s) thereof. Suitable valving allows air to enter and leave the pressure cell and cylinder device, if present, under electronic control.
    Type: Grant
    Filed: August 25, 2010
    Date of Patent: November 29, 2011
    Assignee: Lightsale Energy, Inc.
    Inventors: Danielle A. Fong, Stephen E. Crane, Edwin P. Berlin, Jr., AmirHossein Pourmousa Abkenar, Kartikeya Mahalatkar, Yongxi Hou, Todd Bowers, Karl E. Stahlkopf
  • Patent number: 8061132
    Abstract: A compressed-air energy storage system according to embodiments of the present invention comprises a reversible mechanism to compress and expand air, one or more compressed air storage tanks, a control system, one or more heat exchangers, and, in certain embodiments of the invention, a motor-generator. The reversible air compressor-expander uses mechanical power to compress air (when it is acting as a compressor) and converts the energy stored in compressed air to mechanical power (when it is acting as an expander). In certain embodiments, the compressor-expander comprises one or more stages, each stage consisting of pressure vessel (the “pressure cell”) partially filled with water or other liquid. In some embodiments, the pressure vessel communicates with one or more cylinder devices to exchange air and liquid with the cylinder chamber(s) thereof. Suitable valving allows air to enter and leave the pressure cell and cylinder device, if present, under electronic control.
    Type: Grant
    Filed: August 25, 2010
    Date of Patent: November 22, 2011
    Assignee: Lightsail Energy, Inc.
    Inventors: Danielle A. Fong, Stephen E. Crane, Edwin P. Berlin, Jr., AmirHossein Pourmousa Abkenar, Kartikeya Mahalatkar, Yongxi Hou, Todd Bowers, Karl E. Stahlkopf
  • Publication number: 20110115223
    Abstract: A compressed-air energy storage system according to embodiments of the present invention comprises a reversible mechanism to compress and expand air, one or more compressed air storage tanks, a control system, one or more heat exchangers, and, in certain embodiments of the invention, a motor-generator. The reversible air compressor-expander uses mechanical power to compress air (when it is acting as a compressor) and converts the energy stored in compressed air to mechanical power (when it is acting as an expander). In certain embodiments, the compressor-expander comprises one or more stages, each stage consisting of pressure vessel (the “pressure cell”) partially filled with water or other liquid. In some embodiments, the pressure vessel communicates with one or more cylinder devices to exchange air and liquid with the cylinder chamber(s) thereof. Suitable valving allows air to enter and leave the pressure cell and cylinder device, if present, under electronic control.
    Type: Application
    Filed: January 20, 2011
    Publication date: May 19, 2011
    Applicant: LightSail Energy Inc.
    Inventors: Karl E. STAHLKOPF, Danielle A. Fong, Stephen E. Crane, Edwin P. Berlin, JR., AmirHossein Pourmousa Abkenar
  • Patent number: 7622816
    Abstract: A power control interface between an unstable power source such as a wind farm and a power transmission line employs an electrical energy storage, control system, and electronic compensation module which act together like an “electronic shock absorber” for storing excess power during periods of increased power generation and releasing stored energy during periods of decreased power generation due to wind fluctuations. The control system is provided with a “look ahead” capability for predicting power output (wind speed conditions) and maintaining energy storage or release over a “narrow-band” range despite short duration fluctuations. The control system uses data derived from monitoring the wind farm power output and the power transmission line, and employs system-modeling algorithms to predict narrow-band wind speed conditions.
    Type: Grant
    Filed: October 6, 2008
    Date of Patent: November 24, 2009
    Assignee: Hawaiian Electric Co., Inc.
    Inventor: Karl E. Stahlkopf
  • Publication number: 20090027002
    Abstract: A power control interface between an unstable power source such as a wind farm and a power transmission line employs an electrical energy storage, control system, and electronic compensation module which act together like an “electronic shock absorber” for storing excess power during periods of increased power generation and releasing stored energy during periods of decreased power generation due to wind fluctuations. The control system is provided with a “look ahead” capability for predicting power output (wind speed conditions) and maintaining energy storage or release over a “narrow-band” range despite short duration fluctuations. The control system uses data derived from monitoring the wind farm power output and the power transmission line, and employs system-modeling algorithms to predict narrow-band wind speed conditions.
    Type: Application
    Filed: October 6, 2008
    Publication date: January 29, 2009
    Inventor: Karl E. STAHLKOPF
  • Patent number: 7432611
    Abstract: A power control interface between an unstable power source such as a wind farm and a power transmission line employs an electrical energy storage, control system, and electronic compensation module which act together like an “electronic shock absorber” for storing excess power during periods of increased power generation and releasing stored energy during periods of decreased power generation due to wind fluctuations. The control system is provided with a “look ahead” capability for predicting power output (wind speed conditions) and maintaining energy storage or release over a “narrow-band” range despite short duration fluctuations. The control system uses data derived from monitoring the wind farm power output and the power transmission line, and employs system-modeling algorithms to predict narrow-band wind speed conditions.
    Type: Grant
    Filed: December 12, 2005
    Date of Patent: October 7, 2008
    Assignee: Hawaiian Electric Company, Inc.
    Inventor: Karl E. Stahlkopf
  • Patent number: 7002260
    Abstract: A power control interface between an unstable power source such as a wind farm and a power transmission line employs an electrical energy storage, control system, and electronic compensation module which act together like an “electronic shock absorber” for storing excess power during periods of increased power generation and releasing stored energy during periods of decreased power generation due to wind fluctuations. The control system is provided with a “look ahead” capability for predicting power output (wind speed conditions) and maintaining energy storage or release over a “narrow-band” range despite short duration fluctuations. The control system uses data derived from monitoring the wind farm power output and the power transmission line, and employs system-modeling algorithms to predict narrow-band wind speed conditions.
    Type: Grant
    Filed: October 12, 2004
    Date of Patent: February 21, 2006
    Assignee: HECO, Inc.
    Inventor: Karl E. Stahlkopf
  • Patent number: 6858953
    Abstract: A power control interface between an unstable power source such as a wind farm and a power transmission line employs an electrical energy storage, control system, and electronic compensation module which act together like an “electronic shock absorber” for storing excess power during periods of increased power generation and releasing stored energy during periods of decreased power generation due to wind fluctuations. The control system is provided with a “look ahead” capability for predicting power output (wind speed conditions) and maintaining energy storage or release over a “narrow-band” range despite short duration fluctuations. The control system uses data derived from monitoring the wind farm power output and the power transmission line, and employs system-modeling algorithms to predict narrow-band wind speed conditions.
    Type: Grant
    Filed: October 17, 2003
    Date of Patent: February 22, 2005
    Assignee: Hawaiian Electric Company, Inc.
    Inventor: Karl E. Stahlkopf
  • Publication number: 20040207207
    Abstract: A power control interface between an unstable power source such as a wind farm and a power transmission line employs an electrical energy storage, control system, and electronic compensation module which act together like an “electronic shock absorber” for storing excess power during periods of increased power generation and releasing stored energy during periods of decreased power generation due to wind fluctuations. The control system is provided with a “look ahead” capability for predicting power output (wind speed conditions) and maintaining energy storage or release over a “narrow-band” range despite short duration fluctuations. The control system uses data derived from monitoring the wind farm power output and the power transmission line, and employs system-modeling algorithms to predict narrow-band wind speed conditions.
    Type: Application
    Filed: October 17, 2003
    Publication date: October 21, 2004
    Inventor: Karl E. Stahlkopf