Patents by Inventor Karl Frederick Scheucher

Karl Frederick Scheucher has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9851277
    Abstract: Mechanical, electronic, algorithmic, and computer network facets are combined to create a highly integrated advanced gas sensor. A sensor is integrated into switchgear housings. These sensors integrated into high voltage switchgear products, deployed by electric utility end users in replacement and expansion cycles, function to detect and mitigate atmospheric pollution caused by leaking SF6. As its associated gas insulated tank is charged with 10 to 350 lbs. of SF6, each gas sensor monitors its local cache of gas, accurately sensing and computing fractional percentage losses (emissions) and gains (maintenance replacement) in SF6 mass, storing data in onboard data logs, and communicating data when triggered by detection events or in response to remote requests over a hierarchical communications network, a process that continues without labor until a fractional leak is automatically detected and reported creating the opportunity for early leak mitigation.
    Type: Grant
    Filed: November 8, 2015
    Date of Patent: December 26, 2017
    Assignee: Solon Manufacturing Company
    Inventor: Karl Frederick Scheucher
  • Patent number: 9711868
    Abstract: An In-Building Communications system is disclosed which permits communication in tunnels, underground parking garages, tall buildings such as skyscrapers, buildings having thick walls of concrete or metal, and/or any building which has communication dead zones due to electromagnetic shielding. The invention includes a portable bi-directional amplifier (BDA) system, an outdoor antenna system attached to the building or independently mountable, an indoor antenna system attached to the building or independently mountable inside the building, and a standardized, In-Building Communications (IBC) interface box affixed preferably to the exterior of the building. The interface box communicates with antenna systems attached to the building.
    Type: Grant
    Filed: January 31, 2010
    Date of Patent: July 18, 2017
    Inventor: Karl Frederick Scheucher
  • Patent number: 9696248
    Abstract: Mechanical, electronic, algorithmic, and computer network facets are combined to create a highly integrated advanced sensor that monitors the gas density, state-of-repair, and events associated with switchgear. Measurements of gas pressure, atmospheric pressure, gas temperature, are used with models of the non-ideal behavior of a particular gas to realistically estimate gas density. A hierarchical system of signal processing optimizes measurements working within high-frequency, real-time, short-term, medium-term, diurnal, long-term, and historical timeframes and overcomes measurement errors present in real-world applications. The time at which a condition such as gas density will reach a particular level is calculated. Events such as threshold attainments and switchgear operation are detected. A large memory stores all raw data values allowing flexible re-processing and verification at any future time.
    Type: Grant
    Filed: April 29, 2015
    Date of Patent: July 4, 2017
    Assignee: Solon Manufacturing Company
    Inventor: Karl Frederick Scheucher
  • Patent number: 9335232
    Abstract: Mechanical, electronic, algorithmic, and computer network facets are combined to create a highly integrated advanced gas sensor system. The sensor system, utilized with gas insulated high voltage switchgear products, deployed by electric utility end users in replacement and expansion cycles, function to detect and mitigate atmospheric pollution caused by leaking SF6. As its associated gas insulated tank is charged with 10 to 350 lbs. of SF6, each gas sensor monitors its local cache of gas, accurately sensing and computing fractional percentage losses (emissions) and gains (maintenance replacement) in SF6 mass, storing data in onboard data logs, and communicating data when triggered by detection events or in response to remote requests over a hierarchical communications network, a process that continues without labor until a fractional leak is automatically detected and reported creating the opportunity for early leak mitigation.
    Type: Grant
    Filed: August 3, 2013
    Date of Patent: May 10, 2016
    Assignee: Solon Manufacturing Company
    Inventor: Karl Frederick Scheucher
  • Publication number: 20160061706
    Abstract: Mechanical, electronic, algorithmic, and computer network facets are combined to create a highly integrated advanced gas sensor. A sensor is integrated into switchgear housings. These sensors integrated into high voltage switchgear products, deployed by electric utility end users in replacement and expansion cycles, function to detect and mitigate atmospheric pollution caused by leaking SF6. As its associated gas insulated tank is charged with 10 to 350 lbs. of SF6, each gas sensor monitors its local cache of gas, accurately sensing and computing fractional percentage losses (emissions) and gains (maintenance replacement) in SF6 mass, storing data in onboard data logs, and communicating data when triggered by detection events or in response to remote requests over a hierarchical communications network, a process that continues without labor until a fractional leak is automatically detected and reported creating the opportunity for early leak mitigation.
    Type: Application
    Filed: November 8, 2015
    Publication date: March 3, 2016
    Applicant: SOLON MANUFACTURING COMPANY
    Inventor: KARL FREDERICK SCHEUCHER
  • Publication number: 20150308938
    Abstract: Mechanical, electronic, algorithmic, and computer network facets are combined to create a highly integrated advanced sensor that monitors the gas density, state-of-repair, and events associated with switchgear. Measurements of gas pressure, atmospheric pressure, gas temperature, are used with models of the non-ideal behavior of a particular gas to realistically estimate gas density. A hierarchical system of signal processing optimizes measurements working within high-frequency, real-time, short-term, medium-term, diurnal, long-term, and historical timeframes and overcomes measurement errors present in real-world applications. The time at which a condition such as gas density will reach a particular level is calculated. Events such as threshold attainments and switchgear operation are detected. A large memory stores all raw data values allowing flexible re-processing and verification at any future time.
    Type: Application
    Filed: April 29, 2015
    Publication date: October 29, 2015
    Inventor: KARL FREDERICK SCHEUCHER
  • Patent number: 8970164
    Abstract: A cordless power supply comprising a battery, a power conversion unit, a first standard coupling half permanently affixed to the power conversion unit and a second standard coupling half which reciprocally mates with the first standard coupling half is disclosed and claimed. The second standard coupling half includes a first interengaging half and a second interengaging half. The first interengaging half being standardly engageable with the first standard coupling half permanently affixed to the power conversion unit. The second interengaging half is interengageable with a specific battery. The battery may be a dual use cordless tool battery or an original equipment battery. Alternatively, a cordless power supply comprising an interchangeable adapter may be mounted on the power conversion unit for interconnection with a plurality of batteries. Alternatively, a cordless power supply comprising an adapter integral with the power conversion unit may be used with a specific battery type.
    Type: Grant
    Filed: August 1, 2011
    Date of Patent: March 3, 2015
    Inventor: Karl Frederick Scheucher
  • Patent number: 8815424
    Abstract: A process of controlling the temperature of a battery pack includes the steps of determining the operating mode and present temperature of the battery pack. Optimal temperature for the battery pack depends on the operating mode and the difference between the present temperature and the previously identified optimal temperature. The battery pack is warmed if the temperature difference (measured minus optimal) is large. The optimal time interval over which the battery pack should be warmed is a function of the operating mode and the previously calculated temperature difference. A heater is switchably operated enabling and disabling the heat generating element to warm the pack to the previously identified optimal temperature.
    Type: Grant
    Filed: December 26, 2011
    Date of Patent: August 26, 2014
    Inventor: Karl Frederick Scheucher
  • Patent number: 8472881
    Abstract: A test device includes a microprocessor and a switching network comprising a plurality of coaxial switches. The test device includes a signal booster, an uplink antenna and a downlink antenna, and a diagnostic device. A power source supplies power to the signal booster and the diagnostic device. The microprocessor controls the switching network which, in turn, controls the interconnection of the power source, the signal booster, the uplink and downlink antennas, and the diagnostic device.
    Type: Grant
    Filed: March 29, 2010
    Date of Patent: June 25, 2013
    Inventor: Karl Frederick Scheucher
  • Publication number: 20120092018
    Abstract: A process of controlling the temperature of a battery pack includes the steps of determining the operating mode and present temperature of the battery pack. Optimal temperature for the battery pack depends on the operating mode and the difference between the present temperature and the previously identified optimal temperature. The battery pack is warmed if the temperature difference (measured minus optimal) is large. The optimal time interval over which the battery pack should be warmed is a function of the operating mode and the previously calculated temperature difference. A heater is switchably operated enabling and disabling the heat generating element to warm the pack to the previously identified Optimal temperature.
    Type: Application
    Filed: December 26, 2011
    Publication date: April 19, 2012
    Inventor: KARL FREDERICK SCHEUCHER
  • Patent number: 8131145
    Abstract: The present invention is a lightweight, cordless security camera comprising a lightweight stand or tripod, a video camera with pan, tilt, and zoom articulation and an audio microphone, a wireless networking interface enabling wireless access to the camera controls, video, and audio data streams, an antenna enabling transmission and reception of the aforementioned data via the aforementioned wireless networking interface, and a lightweight, battery power supply providing power to the video camera and wireless networking system. The lightweight, battery power supply includes one or more quickly coupled and uncoupled lightweight batteries which can be easily and quickly interchanged to provide continuous power to the security camera. This enables security forces such as police and military forces to safely and continuously monitor and surveil areas including crime scenes and combat theaters.
    Type: Grant
    Filed: July 28, 2008
    Date of Patent: March 6, 2012
    Inventor: Karl Frederick Scheucher
  • Patent number: 8084154
    Abstract: A process of controlling the temperature of a battery pack includes the steps of determining the operating mode and present temperature of the battery pack. Optimal temperature for the battery pack depends on the operating mode and the difference between the present temperature and the previously identified optimal temperature. The battery pack is warmed if the temperature difference (measured minus optimal) is large. The optimal time interval over which the battery pack should be warmed is a function of the operating mode and the previously calculated temperature difference. A heater is switchably operated enabling and disabling the heat generating element to warm the pack to the previously identified optimal temperature.
    Type: Grant
    Filed: April 13, 2008
    Date of Patent: December 27, 2011
    Inventor: Karl Frederick Scheucher
  • Publication number: 20110286168
    Abstract: A cordless power supply comprising a battery, a power conversion unit, a first standard coupling half permanently affixed to the power conversion unit and a second standard coupling half which reciprocally mates with the first standard coupling half is disclosed and claimed. The second standard coupling half includes a first interengaging half and a second interengaging half. The first interengaging half being standardly engageable with the first standard coupling half permanently affixed to the power conversion unit. The second interengaging half is interengageable with a specific battery. The battery may be a dual use cordless tool battery or an original equipment battery. Alternatively, a cordless power supply comprising an interchangeable adapter may be mounted on the power conversion unit for interconnection with a plurality of batteries. Alternatively, a cordless power supply comprising an adapter integral with the power conversion unit may be used with a specific battery type.
    Type: Application
    Filed: August 1, 2011
    Publication date: November 24, 2011
    Inventor: KARL FREDERICK SCHEUCHER
  • Patent number: 7990102
    Abstract: A cordless power supply comprising a battery, a power conversion unit, a first standard coupling half permanently affixed to the power conversion unit and a second standard coupling half which reciprocally mates with the first standard coupling half is disclosed and claimed. The second standard coupling half includes a first interengaging half and a second interengaging half. The first interengaging half being standardly engageable with the first standard coupling half permanently affixed to the power conversion unit. The second interengaging half is interengageable with a specific battery. The battery may be a dual use cordless tool battery or an original equipment battery. Alternatively, a cordless power supply comprising an interchangeable adapter may be mounted on the power conversion unit for interconnection with a plurality of batteries. Alternatively, a cordless power supply comprising an adapter integral with the power conversion unit may be used with a specific battery type.
    Type: Grant
    Filed: September 29, 2007
    Date of Patent: August 2, 2011
    Inventor: Karl Frederick Scheucher
  • Patent number: 7948207
    Abstract: The electrical vehicle energy storage system permits the electric refueling of the electric vehicle just like an automobile would be refueled with gasoline at a gas station. Circuitry on board the vehicle accessible by the electric refueling station enables the determination of the energy content of the battery module or modules returned to the electric refueling station and the owner of the vehicle is given credit for the energy remaining in the battery module or modules which have been exchanged. Selective refueling may take place for given battery modules by removing them from the battery system and charging them at home, office or factory. A process for operating an electric vehicle is also disclosed and claimed.
    Type: Grant
    Filed: September 7, 2007
    Date of Patent: May 24, 2011
    Inventor: Karl Frederick Scheucher
  • Publication number: 20100197222
    Abstract: An In-Building Communications system is disclosed which permits communication in tunnels, underground parking garages, tall buildings such as skyscrapers, buildings having thick walls of concrete or metal, and/or any building which has communication dead zones due to electromagnetic shielding. The invention includes a portable bi-directional amplifier (BDA) system, an outdoor antenna system attached to the building or independently mountable an indoor antenna system attached to the building or independently mountable inside the building, and a standardized, In-Building Communications (IBC) interface box affixed preferably to the exterior of the building. The interface box communicates with antenna systems attached to the building.
    Type: Application
    Filed: January 31, 2010
    Publication date: August 5, 2010
    Inventor: KARL FREDERICK SCHEUCHER
  • Publication number: 20090086043
    Abstract: The present invention is a lightweight, cordless security camera comprising a lightweight stand or tripod, a video camera with pan, tilt, and zoom articulation and an audio microphone, a wireless networking interface enabling wireless access to the camera controls, video, and audio data streams, an antenna enabling transmission and reception of the aforementioned data via the aforementioned wireless networking interface, and a lightweight, battery power supply providing power to the video camera and wireless networking system. The lightweight, battery power supply includes one or more quickly coupled and uncoupled lightweight batteries which can be easily and quickly interchanged to provide continuous power to the security camera. This enables security forces such as police and military forces to safely and continuously monitor and surveil areas including crime scenes and combat theaters.
    Type: Application
    Filed: July 28, 2008
    Publication date: April 2, 2009
    Inventor: KARL FREDERICK SCHEUCHER
  • Publication number: 20080213652
    Abstract: A process of controlling the temperature of a battery pack includes the steps of determining the operating mode and present temperature of the battery pack. Optimal temperature for the battery pack depends on the operating mode and the difference between the present temperature and the previously identified optimal temperature. The battery pack is warmed if the temperature difference (measured minus optimal) is large. The optimal time interval over which the battery pack should be warmed is a function of the operating mode and the previously calculated temperature difference. A heater is switchably operated enabling and disabling the heat generating element to warm the pack to the previously identified optimal temperature.
    Type: Application
    Filed: April 13, 2008
    Publication date: September 4, 2008
    Inventor: KARL FREDERICK SCHEUCHER