Patents by Inventor Karl Grosh

Karl Grosh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11950052
    Abstract: A transducer of the preferred embodiment including a transducer and a plurality of adjacent, tapered cantilevered beams. Each of the beams define a beam base, a beam tip, and a beam body disposed between the beam base and the beam tip. The beams are arranged such that each of the beam tips extends toward a common area. Each beam is joined to the substrate along the beam base and is free from the substrate along the beam body. A preferred method of manufacturing a transducer can include: depositing alternating layers of piezoelectric and electrode onto the substrate in block, processing the deposited layers to define cantilever geometry in block, depositing metal traces in block, and releasing the cantilevered beams from the substrate in block.
    Type: Grant
    Filed: February 18, 2022
    Date of Patent: April 2, 2024
    Assignee: QUALCOMM Technologies, Inc.
    Inventors: Karl Grosh, Robert J. Littrell
  • Patent number: 11871664
    Abstract: A transducer comprising: at least one piezoelectric layer; a first patterned conductive layer that is patterned with a first opening; a second patterned conductive layer that is patterned with a second opening; wherein at least one piezoelectric layer is between the first and the second patterned conductive layers in a stack; and wherein a position of the first opening is staggered relative to a position of the second opening in the stack to mitigate an occurrence of crack propagation through the layers.
    Type: Grant
    Filed: February 13, 2020
    Date of Patent: January 9, 2024
    Assignee: QUALCOMM Technologies, Inc.
    Inventors: Robert J. Littrell, Karl Grosh
  • Publication number: 20230337544
    Abstract: A microphone including a casing having a front wall, a back wall, and a side wall joining the front wall to the back wall, a transducer mounted to the front wall, the transducer including a substrate and a transducing element, the transducing element having a transducer acoustic compliance dependent on the transducing element dimensions, a back cavity cooperatively defined between the back wall, the side wall, and the transducer, the back cavity having a back cavity acoustic compliance. The transducing element is dimensioned such that the transducing element length matches a predetermined resonant frequency and the transducing element width, thickness, and elasticity produces a transducer acoustic compliance within a given range of the back cavity acoustic compliance.
    Type: Application
    Filed: April 27, 2023
    Publication date: October 19, 2023
    Inventors: Karl Grosh, Robert J. Littrell
  • Publication number: 20230308808
    Abstract: A device comprising: a sensor; and a first circuit configured to detect when an input stimulus to the sensor satisfies one or more detection criteria, and further configured to produce a signal upon detection that causes adjustment of performance of the device; and a second circuit for processing input following detection, wherein the second circuit is configured to increase its power level following detection, relative to a power level of the second circuit prior to detection.
    Type: Application
    Filed: March 27, 2023
    Publication date: September 28, 2023
    Inventors: Robert John LITTRELL, Ronald GAGNON, Karl GROSH
  • Patent number: 11665968
    Abstract: A microphone including a casing having a front wall, a back wall, and a side wall joining the front wall to the back wall, a transducer mounted to the front wall, the transducer including a substrate and a transducing element, the transducing element having a transducer acoustic compliance dependent on the transducing element dimensions, a back cavity cooperatively defined between the back wall, the side wall, and the transducer, the back cavity having a back cavity acoustic compliance. The transducing element is dimensioned such that the transducing element length matches a predetermined resonant frequency and the transducing element width, thickness, and elasticity produces a transducer acoustic compliance within a given range of the back cavity acoustic compliance.
    Type: Grant
    Filed: February 19, 2021
    Date of Patent: May 30, 2023
    Assignee: The Regents of the University of Michigan
    Inventors: Karl Grosh, Robert J. Littrell
  • Patent number: 11617041
    Abstract: A device comprising: a sensor; and a first circuit configured to detect when an input stimulus to the sensor satisfies one or more detection criteria, and further configured to produce a signal upon detection that causes adjustment of performance of the device; and a second circuit for processing input following detection, wherein the second circuit is configured to increase its power level following detection, relative to a power level of the second circuit prior to detection.
    Type: Grant
    Filed: May 13, 2020
    Date of Patent: March 28, 2023
    Assignee: QUALCOMM Incorporated
    Inventors: Robert J. Littrell, Ronald Gagnon, Karl Grosh
  • Publication number: 20220248145
    Abstract: A transducer of the preferred embodiment including a transducer and a plurality of adjacent, tapered cantilevered beams. Each of the beams define a beam base, a beam tip, and a beam body disposed between the beam base and the beam tip. The beams are arranged such that each of the beam tips extends toward a common area. Each beam is joined to the substrate along the beam base and is free from the substrate along the beam body. A preferred method of manufacturing a transducer can include: depositing alternating layers of piezoelectric and electrode onto the substrate in block, processing the deposited layers to define cantilever geometry in block, depositing metal traces in block, and releasing the cantilevered beams from the substrate in block.
    Type: Application
    Filed: February 18, 2022
    Publication date: August 4, 2022
    Inventors: Karl Grosh, Robert J. Littrell
  • Publication number: 20220212918
    Abstract: A sensor, such as a piezoelectric MEMS vibration sensor, includes a frame, a beam array comprising a plurality of beams, and a plurality of masses. Each beam of the plurality of beams has an anchored end and an unanchored end, with each beam being coupled to the frame at the anchored end. The unanchored end of each beam is coupled to a respective mass of the plurality of masses. Each beam of the plurality of beams can be configured to minimize a variation in a voltage output for a limited frequency range. In some implementations, the resonant frequency of each beam corresponds to a sensitivity peak in a limited frequency range.
    Type: Application
    Filed: May 14, 2020
    Publication date: July 7, 2022
    Inventors: Alison HAKE, Karl GROSH
  • Patent number: 11259124
    Abstract: A transducer of the preferred embodiment including a transducer and a plurality of adjacent, tapered cantilevered beams. Each of the beams define a beam base, a beam tip, and a beam body disposed between the beam base and the beam tip. The beams are arranged such that each of the beam tips extends toward a common area. Each beam is joined to the substrate along the beam base and is free from the substrate along the beam body. A preferred method of manufacturing a transducer can include: depositing alternating layers of piezoelectric and electrode onto the substrate in block, processing the deposited layers to define cantilever geometry in block, depositing metal traces in block, and releasing the cantilevered beams from the substrate in block.
    Type: Grant
    Filed: March 14, 2019
    Date of Patent: February 22, 2022
    Assignee: Vesper Technologies Inc.
    Inventors: Karl Grosh, Robert J. Littrell
  • Publication number: 20210273152
    Abstract: A microphone including a casing having a front wall, a back wall, and a side wall joining the front wall to the back wall, a transducer mounted to the front wall, the transducer including a substrate and a transducing element, the transducing element having a transducer acoustic compliance dependent on the transducing element dimensions, a back cavity cooperatively defined between the back wall, the side wall, and the transducer, the back cavity having a back cavity acoustic compliance. The transducing element is dimensioned such that the transducing element length matches a predetermined resonant frequency and the transducing element width, thickness, and elasticity produces a transducer acoustic compliance within a given range of the back cavity acoustic compliance.
    Type: Application
    Filed: February 19, 2021
    Publication date: September 2, 2021
    Inventors: Karl Grosh, Robert J. Littrell
  • Patent number: 11088315
    Abstract: A piezoelectric MEMS microphone comprising a multi-layer sensor that includes at least one piezoelectric layer between two electrode layers, with the sensor being dimensioned such that it provides a near maximized ratio of output energy to sensor area, as determined by an optimization parameter that accounts for input pressure, bandwidth, and characteristics of the piezoelectric and electrode materials. The sensor can be formed from single or stacked cantilevered beams separated from each other by a small gap, or can be a stress-relieved diaphragm that is formed by deposition onto a silicon substrate, with the diaphragm then being stress relieved by substantial detachment of the diaphragm from the substrate, and then followed by reattachment of the now stress relieved diaphragm.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: August 10, 2021
    Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Karl Grosh, Robert J. Littrell
  • Patent number: 10964880
    Abstract: A microphone including a casing having a front wall, a back wall, and a side wall joining the front wall to the back wall, a transducer mounted to the front wall, the transducer including a substrate and a transducing element, the transducing element having a transducer acoustic compliance dependent on the transducing element dimensions, a back cavity cooperatively defined between the back wall, the side wall, and the transducer, the back cavity having a back cavity acoustic compliance. The transducing element is dimensioned such that the transducing element length matches a predetermined resonant frequency and the transducing element width, thickness, and elasticity produces a transducer acoustic compliance within a given range of the back cavity acoustic compliance.
    Type: Grant
    Filed: November 20, 2018
    Date of Patent: March 30, 2021
    Assignees: THE REGENTS OF THE UNIVERSITY OF MICHIGAN, VESPER TECHNOLOGIES INC.
    Inventors: Karl Grosh, Robert J. Littrell
  • Patent number: 10825982
    Abstract: A piezoelectric Micro-Electro-Mechanical Systems (MEMS) device comprising: a physical element; and a piezoelectric sensor element, with the physical element positioned in proximity to a moving portion of the piezoelectric sensor element, and with proximity of the physical element to the moving portion reducing a probability of breakage of the piezoelectric sensor element by limiting an excursion of the piezoelectric sensor element, relative to a probability of breakage of the piezoelectric sensor element in another piezoelectric MEMS device without the physical element.
    Type: Grant
    Filed: September 11, 2015
    Date of Patent: November 3, 2020
    Assignee: Vesper Technologies Inc.
    Inventors: Robert J. Littrell, Karl Grosh, Craig Core, Yu Hui, Wang Kyung Sung
  • Publication number: 20200344555
    Abstract: A device comprising: a sensor; and a first circuit configured to detect when an input stimulus to the sensor satisfies one or more detection criteria, and further configured to produce a signal upon detection that causes adjustment of performance of the device; and a second circuit for processing input following detection, wherein the second circuit is configured to increase its power level following detection, relative to a power level of the second circuit prior to detection.
    Type: Application
    Filed: May 13, 2020
    Publication date: October 29, 2020
    Inventors: Robert J. Littrell, Ronald Gagnon, Karl Grosh
  • Patent number: 10715922
    Abstract: A device comprising: a sensor; and a first circuit configured to detect when an input stimulus to the sensor satisfies one or more detection criteria, and further configured to produce a signal upon detection that causes adjustment of performance of the device; and a second circuit for processing input following detection, wherein the second circuit is configured to increase its power level following detection, relative to a power level of the second circuit prior to detection.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: July 14, 2020
    Assignee: Vesper Technologies Inc.
    Inventors: Robert J. Littrell, Ronald Gagnon, Karl Grosh
  • Publication number: 20200148532
    Abstract: A microphone including a casing having a front wall, a back wall, and a side wall joining the front wall to the back wall, a transducer mounted to the front wall, the transducer including a substrate and a transducing element, the transducing element having a transducer acoustic compliance dependent on the transducing element dimensions, a back cavity cooperatively defined between the back wall, the side wall, and the transducer, the back cavity having a back cavity acoustic compliance. The transducing element is dimensioned such that the transducing element length matches a predetermined resonant frequency and the transducing element width, thickness, and elasticity produces a transducer acoustic compliance within a given range of the back cavity acoustic compliance.
    Type: Application
    Filed: November 20, 2018
    Publication date: May 14, 2020
    Inventors: Karl Grosh, Robert J. Littrell
  • Patent number: 10566517
    Abstract: A transducer comprising: at least one piezoelectric layer; a first patterned conductive layer that is patterned with a first opening; a second patterned conductive layer that is patterned with a second opening; wherein at least one piezoelectric layer is between the first and the second patterned conductive layers in a stack; and wherein a position of the first opening is staggered relative to a position of the second opening in the stack to mitigate an occurrence of crack propagation through the layers.
    Type: Grant
    Filed: September 11, 2015
    Date of Patent: February 18, 2020
    Assignee: Vesper Technologies Inc.
    Inventors: Robert J. Littrell, Karl Grosh
  • Publication number: 20190281393
    Abstract: A transducer of the preferred embodiment including a transducer and a plurality of adjacent, tapered cantilevered beams. Each of the beams define a beam base, a beam tip, and a beam body disposed between the beam base and the beam tip. The beams are arranged such that each of the beam tips extends toward a common area. Each beam is joined to the substrate along the beam base and is free from the substrate along the beam body. A preferred method of manufacturing a transducer can include: depositing alternating layers of piezoelectric and electrode onto the substrate in block, processing the deposited layers to define cantilever geometry in block, depositing metal traces in block, and releasing the cantilevered beams from the substrate in block.
    Type: Application
    Filed: March 14, 2019
    Publication date: September 12, 2019
    Inventors: Karl Grosh, Robert J. Littrell
  • Patent number: 10284960
    Abstract: A transducer of the preferred embodiment including a transducer and a plurality of adjacent, tapered cantilevered beams. Each of the beams define a beam base, a beam tip, and a beam body disposed between the beam base and the beam tip. The beams are arranged such that each of the beam tips extends toward a common area. Each beam is joined to the substrate along the beam base and is free from the substrate along the beam body. A preferred method of manufacturing a transducer can include: depositing alternating layers of piezoelectric and electrode onto the substrate in block, processing the deposited layers to define cantilever geometry in block, depositing metal traces in block, and releasing the cantilevered beams from the substrate in block.
    Type: Grant
    Filed: May 1, 2015
    Date of Patent: May 7, 2019
    Assignee: Vesper Technologies Inc.
    Inventors: Karl Grosh, Robert J. Littrell
  • Publication number: 20190098417
    Abstract: A device comprising: a sensor; and a first circuit configured to detect when an input stimulus to the sensor satisfies one or more detection criteria, and further configured to produce a signal upon detection that causes adjustment of performance of the device; and a second circuit for processing input following detection, wherein the second circuit is configured to increase its power level following detection, relative to a power level of the second circuit prior to detection.
    Type: Application
    Filed: February 28, 2017
    Publication date: March 28, 2019
    Inventors: Robert J. Littrell, Ronald Gagnon, Karl Grosh