Patents by Inventor Karl H. Schuleri

Karl H. Schuleri has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10959618
    Abstract: The present invention is directed to a method for combining assessment of different factors of dyssynchrony into a comprehensive, non-invasive toolbox for treating patients with a CRT therapy device. The toolbox provides high spatial resolution, enabling assessment of regional function, as well as enabling derivation of global metrics to improve patient response and selection for CRT therapy. The method allows for quantitative assessment and estimation of mechanical contraction patterns, tissue viability, and venous anatomy from CT scans combined with electrical activation patterns from Body Surface Potential Mapping (BSPM). This multi-modal method is therefore capable of integrating electrical, mechanical, and structural information about cardiac structure and function in order to guide lead placement of CRT therapy devices. The method generates regional electro-mechanical properties overlaid with cardiac venous distribution and scar tissue.
    Type: Grant
    Filed: May 12, 2015
    Date of Patent: March 30, 2021
    Assignee: The Johns Hopkins University
    Inventors: Fady Dawoud, Karl H. Schuleri, Amir Pourmorteza, Albert C. Lardo, Elliot McVeigh
  • Publication number: 20170071675
    Abstract: The present invention is directed to a method for combining assessment of different factors of dyssynchrony into a comprehensive, non-invasive toolbox for treating patients with a CRT therapy device. The toolbox provides high spatial resolution, enabling assessment of regional function, as well as enabling derivation of global metrics to improve patient response and selection for CRT therapy. The method allows for quantitative assessment and estimation of mechanical contraction patterns, tissue viability, and venous anatomy from CT scans combined with electrical activation patterns from Body Surface Potential Mapping (BSPM). This multi-modal method is therefore capable of integrating electrical, mechanical, and structural information about cardiac structure and function in order to guide lead placement of CRT therapy devices. The method generates regional electro-mechanical properties overlaid with cardiac venous distribution and scar tissue.
    Type: Application
    Filed: May 12, 2015
    Publication date: March 16, 2017
    Inventors: Fady Dawoud, Karl H. Schuleri, Amir Pourmorteza, Albert C. Lardo, Elliot McVeigh